

Site Location Data Sheet
GPS Investigation Data Sheet
Offset GPS Measurements Data Sheet
Glossary

GPS Investigation

Site Location Data Sheet

You will need at least one copy of this GLOBE GPS Data Sheet per GLOBE site. After making your field GPS measurements and averaging the position data, record your results on one of the investigation site definition data sheets, then submit your location data to GLOBE on the Internet (www.globe.gov).

Type of Site

(Atmosphere, Biosphere, etc.)

Site Description

(25 characters or less)

Averaged Latitude

(Whole Degrees, Decimal Minutes N/S)

Averaged Longitude

(Whole Degrees, Decimal Minutes E/W)

Time of 1st Observation

Hours: Minutes: Seconds in UT

Type of Receiver

Magellan Trailblazer XL \& UNAVCO number
or
Manufacturer model number and serial number

GPS Investigation

Data Recorded By: \qquad
Date Recorded: Year \qquad Month: \qquad Day: \qquad
Circle Site type: School Atmosphere Biosphere Hydrosphere Soil (Pedosphere) Other \qquad
Site Name: \qquad
School Name: \qquad
School Address: \qquad

Do not begin recording data until your GPS receiver has "locked in."
Wait at least one minute between recording each observation.
Record the following data from the appropriate screens on your GPS unit.

Obs	Latitude Decimal Degrees (N/S)	Longitude Decimal Degrees (E/W)	Elevation Meters	$\begin{gathered} \text { Time } \\ \mathrm{H}: \mathrm{M}: \mathrm{S} \text { UTC } \end{gathered}$	\# Sats Satellites	Messages Circle if Displayed
1						2D 3D
2						2D 3D
3						2D 3D
4						2D 3D
5						2D 3D

\square

GPS Reciver Information
Brand Name: \qquad
Model Number: \qquad

Offset GPS Measurements

Data Sheet
Data Recorded By: \qquad
Date Recorded: Year \qquad Month: \qquad Day: \qquad
Circle Site type: School Atmosphere Biosphere Hydrosphere Soil (Pedosphere) Other \qquad
Site Name: \qquad

School Name:

\qquad
School Address: \qquad

Offset GPS Measurements

Measured Latitude: \qquad degrees N or S (circle one)
Measured Longitude: \qquad degrees W or E (circle one)

Direction from GLOBE site to offset location: N or S (circle one)
Distance from GLOBE site to offset location: \qquad meters

Computations

GLOBE Site's Latitude:

If offset location is further from Equator than the study site:
GLOBE site latitude = \qquad (Measured Latitude) - \qquad $($ Change in latitude $)=$ \qquad degrees N or S (circle one)

If offset location is closer to the Equator than the study site:
GLOBE site latitude = \qquad (Measured Latitude) + \qquad (Change in latitude) $=$ \qquad degrees N or S

GLOBE site's longitude: \qquad W or E (circle one)

Same as Measured Longitude at the Offset location

GLOBE site's elevation: \qquad From a local topographic map using your site's latitude and longitude

Glossary

Accuracy

The difference between the indicated measurement value and the true value

Average

A technique for using one number to describe a group of numbers. An average (or mean) value is computed by summing a set of values and divided the sum by the number of values summed.

Equinox

One of the two times of year when the sun appears directly over Earth's equator occurring typically on 21 March (vernal equinox) and 23 September (autumnal equinox). On these days, the times of daylight and night will be equal.

Geoid

The irregular surface that follows the global mean sea level and is shaped by Earth's gravitational field
Global Positioning System (GPS)
The Global Positioning System is a navigation system that includes 24 satellites orbiting 20,200 kilometers above the Earth. Using time measurements of GPS satellite signals, the receivers can pinpoint our latitude, longitude, and elevation.

Histogram

A frequency distribution plot indicating how often a particular number appears in a group of numbers

Latitude

The angle measurement in degrees of a planet north and south of its equator. Beginning at the Earth's equator (0°), latitude is measured in degrees, with the poles being 90° north and south.

Longitude

The angle measurement in degrees east and west around a planet's spin axis. On Earth, the Prime Meridian is the north-south line through the town of Greenwich, England. This is 0° longitude, and the International Date Line is 180° from the Prime Meridian.

Magnetic Compass

A hand-held instrument displaying the angular orientation of a pivoting
lightweight magnet. Because Earth
behaves like a giant magnet, the magnet in the compass will point toward Earth's magnetic poles which generally indicates north and south.

Magnetic Variation

Also called Magnetic Declination, this is the angle between the magnetic and geographic (spin axis) poles specific to a locality. It is expressed in degrees east or west to indicate the direction to true north from magnetic north. Earth's magnetic north pole is slowly moving and presently located in Canada's North West Territories about 11 degrees away from our North Pole. Additionally, magnetic properties of Earth's composition vary slightly between locations contributing a unique distortion to Earth's magnetic field at any given site. Values may be found on navigation charts.

Meridian

This is a circumference around the Earth's surface which passes through both poles and the equator. These form curves of constant longitude between any two poles.

Navigation

The science and technology of determining course, position, and distance traveled.

Offset Site

This is a site directly north or south of a site where we are able to make a successful GPS measurement.
Positions (or Locations)
Absolute
Measured from an agreed upon fixed location.
Relative
Measured from some arbitrary point such as your location.
Plumb bob

Precision

The measure of the repeatability of an observation, that is if a measurement is repeated multiple times, how much will the individual measured values vary from the average of all the measurements.

Reference Ellipsoid

A smooth surface that approximates mean sea level. It is used by GPS receivers as the reference surface in their elevation measurements.

Resolution

The smallest change which can be displayed by an instrument

Satellite

 Any celestial body that orbits another larger bodySolstice
One of the two times of the year when the overhead sun appears furthest from Earth's equator occurring typically on 21 June and 22 December. These will be the longest and shortest days of the year if your location is respectively closer to or further from the overhead sun.

Sun angle

This is the angle between horizontal (the ground) and our sun. Sometimes this angle is called an elevation or altitude angle.

Trigonometry

The mathematical study of triangles, trigonometric functions, and their applications. Trigonometric techniques allow us to relate angle values to the lengths of various sides of a triangle.

Zenith angle

For our sun angle measurement, this is the angle between vertical (straight up) and our sun. In navigation, this is sometimes called a zenith distance. On the days of the spring or fall equinoxes, this angle will be our latitude. The zenith is the point directly overhead wherever we are. The sum of the sun angle and the zenith angle is 90°.

Circular Units, Distances, and Relationships

Degree (${ }^{\circ}$)
A circle may be divided into 360° (or 400 Grads or about two times Pi (\square Radians). Small fractions of a degree may be indicated either as decimal fractions (25.2525°) or using whole degrees, minutes, and seconds $25^{\circ} 15^{\prime}$ 9").
Minute (arc minute, ')
One degree may be divided into 60 minutes. Therefore, there are 360 x $60=21,600$ arc minutes (21.600') in a circle.
Second (arc second, ") One minute may be divided into 60 seconds. Therefore, there are 60×60 $=3600$ arc seconds in one degree or $1,296,000$ arc seconds $(1,296,000$) in a circle.

Radian

An angle measurement unit equal to the angle subtended at the center of a circle by an arc equal in length to the radius of the circle. A full circle contains two times Pi radians or 360°. One radian is about 57.3°. For example: $25^{\circ} .15^{\prime} 9^{\prime \prime}=25.2525^{\circ}$ $=$ about 0.4407 radians. Pi is an irrational number (cannot be described as a ratio of two whole numbers and thus requires an infinite number of decimal digits) with a value of about 3.141592653590 . Pi has been computed to millions of digits but the accuracy of the value listed here would induce errors of less than a meter when working with distances the size of our solar system.

Time Reference Frames

Local Solar Noon

The time-of-day when the sun angle is greatest at your location. This time is specific to your location and varies by about a half-hour throughout the year.

Mean Time

Formerly called Civil Time, this is the time-of-day value typically displayed on our clocks. It is defined to cause the yearly average location of the sun to be the same and near overhead at noon in your time zone. Each time zone is different by one hour from adjacent time zones and is defined to be 15° of longitude with a few minor exceptions determined by governments to suit local needs or geography. Your mean may be related to Universal Time by determining your distance from Earth's 0° Iongitude either in 15° increments or numbers of time zones. Universal and Mean Time may be contrasted to Sidereal Time (used by astronomers and sometimes called star time) which is defined to bring distant celestial bodies to the same point in the sky after exactly one Earth rotation around its sun. A sidereal day is about 4 minutes shorter than a day as indicated using mean time.

Universal Time

Also known as UT, Zulu, or GMT (Greenwich Mean Time), this is the time-of-day for a 24 hour day defined to cause the yearly average location of the sun to be overhead at noon when observed at Earth's zero degree longitude.

Consequences of the 23.5° tilt of Earth's spin axis from the plane of Earth's solar orbit
Arctic and Antarctic Circles
Also called North and South Polar Circles, these are the extremes in latitude (66.5° North and South) from Earth's poles where total darkness or sunlight may be experienced in local respective winters or summers.
Tropics of Cancer and Capricorn These are the extremes in latitude (23.5° North and South respectively) from Earth's equator between which the sun may be directly overhead at some time during the year.

