Satellite Rainfall Estimates and Land Cover mapping: how are they related?

Vasco M. Mantas 1,2

- (1) MARE, Marine and Environmental Research Centre, University of Coimbra, Portugal
- (2) CEMUC, Centre for Mechanical Engineering, University of Coimbra, Portugal

Introduction

- Biologist, Earth Observation.
- Today's messages:
- Field work can't be entirely replaced by satellite data;
- Educators, students, and citizen scientists can play A big role in science.
- 3. Watersheds are the functional units of landscape.

University of

Coimbra

Flooding and Drought

Uninterrupted, accurate and timely rainfall estimates are necessary

Rainfall gauges are insufficient

Tropical Rainfall
Measuring Mission
(TRMM)

Global Precipitation Measurement (GPM)

Satellite Rainfall Estimates

- Satellite Rainfall Estimates are used in a broad range of applications with significant societal benefits;
- Applications include hydrological modeling, global change studies or ecosystem research;
- These applications require the data to be available at adequate spatial and temporal resolution.

Satellite Rainfall Estimates

- To be used operationally, rainfall products must be calibrated and validated;
- Calibration: the process of identifying robust relations between the satellite data and the variable of interest (e.g. rainfall);
- Validation: the process of comparing the values returned by the product and those measured in reality (evaluates the performance).

Validating Rainfall Estimates

Case study 1: Peru

Rainfall and Land Cover

Validating Rainfall Estimates

Correlation of Satellite Rainfall Estimates and gauge measurements

A: Daily

B: 8-Day

C: 16-days

D: Monthly

Land Cover

- Rainfall affects land cover (e.g. vegetation types and phenology);
- Land cover variables are often used in models that also integrate rainfall estimates (e.g. hydrological modelling);
- Mapping urbanized areas relevant to forecast the impact of flooding events in watersheds.

Case Study 2: Urbanized areas in a watershed

Case Study 2: Urbanized areas in a watershed

Source: www.fairfaxcounty.gov

Data sources

RADAR: Sentinel-1A (ESA)

Landsat-8

Ground Truth, how much is enough?

- Aerial and High Resolution Satellite data as well as ground truth campaigns;
- Pervious and impervious surfaces are manually or automatically identified;
- 133 km² of samples;
- Additional independent validation set.

Source:

www.maryland.gov

Data distribution

- Final step: data distribution;
- Traditional data portals (web);
- Emerging platforms:

smartphones/tablets the cloud

Local experience matters

- Local experience is relevant because satellite products often address societal challenges and needs;
- Listening to communities is the first step towards defining development priorities;
- The Story Maps initiative of the El Niño Campaign asks communities worldwide to share El Niño-related experiences.

Local experience matters

Conclusion

- Earth Observation (EO) products are relevant to a wide range of applications and can replace/supplement in situ data sources;
- EO products particularly important to monitor dynamic phenomena, such as El Niño;
- Calibration and Validation activities are important and can include the efforts of citizen scientists;

Thank you!

vasco.mantas@dct.uc.pt

Projects supported by:

