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Abstract
The 3G iPhone was the first consumer device to provide a seamless integration of
three positioning technologies: Assisted GPS (A-GPS), WiFi positioning and cellular
network positioning. This study presents an evaluation of the accuracy of locations
obtained using these three positioning modes on the 3G iPhone. A-GPS locations
were validated using surveyed benchmarks and compared to a traditional low-cost
GPS receiver running simultaneously. WiFi and cellular positions for indoor loca-
tions were validated using high resolution orthophotography. Results indicate that
A-GPS locations obtained using the 3G iPhone are much less accurate than those
from regular autonomous GPS units (average median error of 8 m for ten 20-minute
field tests) but appear sufficient for most Location Based Services (LBS). WiFi
locations using the 3G iPhone are much less accurate (median error of 74 m for 58
observations) and fail to meet the published accuracy specifications. Positional errors
in WiFi also reveal erratic spatial patterns resulting from the design of the calibration
effort underlying the WiFi positioning system. Cellular positioning using the 3G
iPhone is the least accurate positioning method (median error of 600 m for 64
observations), consistent with previous studies. Pros and cons of the three position-
ing technologies are presented in terms of coverage, accuracy and reliability, fol-
lowed by a discussion of the implications for LBS using the 3G iPhone and similar
mobile devices.

1 Introduction

Reliable location information has become a cornerstone of many applications, including
emergency services, navigation, commercial services, recreation, tracking and network-

Address for correspondence: Paul A. Zandbergen, Department of Geography, Bandelier West Room
111, MSC01 1110, 1 University of New Mexico, Alburquerque, NM 87131, USA. E-mail:
zandberg@unm.edu

Transactions in GIS, 2009, 13(s1): 5–26

© 2009 Blackwell Publishing Ltd
doi: 10.1111/j.1467-9671.2009.01152.x

mailto:zandberg@unm.edu
tensign
Highlight



ing. Global Positioning Systems (GPS) have emerged as the leading technology to provide
location information to these Location Based Services (LBS). A GPS receiver provides
accurate location, speed and time to a user, anywhere in the world and under any weather
condition. Improvements in GPS receiver technology have resulted in very reliable and
affordable GPS receivers for a wide range of applications. Most newer model cell phones
are GPS-enabled, resulting in the widespread adoption of consumer applications that rely
on GPS.

The GPS technology adopted in most cell phones employs a server-side component
for the processing of the GPS signal and is referred to as Assisted GPS (A-GPS). While
high-sensitivity GPS chipsets have been adopted in recent years, A-GPS does not work
well indoors and as a result complementary positioning systems are employed under
these conditions. Metropolitan-scale WiFi positioning has become a reality in most urban
areas in the U.S. for WiFi enabled devices for both indoor and outdoor locations. Cell
phones can also fall back on the more established cellular network positioning tech-
niques. These three different techniques will be reviewed, followed by a discussion of
their implementation in Apple’s popular 3G iPhone. The empirical part of this study
consists of an evaluation of the accuracy of locations obtained using these three
positioning modes of the 3G iPhone.

1.1 Assisted GPS

Most GPS-enabled cell phones, including the 3G iPhone, employ a technology known
as Assisted GPS (A-GPS). With A-GPS many of the functions of a full GPS receiver are
performed by a remote GPS location server. This remote server provides the A-GPS
mobile device with satellite orbit and clock information; the initial position and time
estimate; satellite selection, range and range date; and position computation. The
mobile device contains a very basic GPS receiver that needs to synchronize to given
satellites that are visible and transfer pseudo range information to the location server
over the cellular network. With A-GPS the mobile device does not need to decode the
GPS messages for each satellite or perform an extensive search for visible satellites
when the system is turned on. This results in reduced power consumption and rapid
time-to-first-fix. Most cellular service providers have adopted A-GPS as the technology
of choice to meet the U.S. Federal Communications Commission (FCC) requirements
for location information to support E911 services. The FCC requires that handset-
based systems locate the caller to within 50 m for 67% of calls and to 150 m for 95%
of calls.

GPS and A-GPS, however, do not work very well in high density urban areas due to
limited satellite visibility, and typically do not work at all indoors due to signal obstruc-
tions. As a result, the availability of reliable positioning is limited in areas where people
spend most of their time. This is changing somewhat with the adoption of high-sensitivity
GPS (HSGPS) chip sets. Using a large number of correlators these chips are able to obtain
a position fix using very weak GPS signals. While HSGPS does work under challenging
conditions (e.g. urban canyons, indoors), positional accuracy and time-to-first-fix are
often much worse than under ideal conditions. Many newer A-GPS systems employ
HSGPS chip sets but even these receivers are not always able to obtain a position fix
indoors, particularly inside buildings with a lot of steel in their construction or through
several layers of concrete or brick.
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1.2 Alternative Positioning Systems

A number of indoor positioning systems have been developed to overcome the limitations
of GPS. These are based on terrestrial beacons and use cellular network signals, WiFi
signals, Bluetooth, infrared, ultrasound or other radio frequencies. Good recent over-
views of these systems are provided by and Kolodziej and Hjelm (2006) and Bensky
(2008). Examples of systems include Active Badges based on infrared (Want et al. 1992)
and Active Bats based on ultrasound (Harter et al. 1999), both developed by AT&T,
RADAR developed by Microsoft Research (Bahl and Padmanabhan 2000), Ekahau
(Ekahau 2008) and AeroScout (AeroScout 2008) all based on WiFi signals, MIT Cricket
(Priyantha et al. 2000) based on radio signals and ultrasound, and MoteTrack (Lorincz
and Welsh 2007) based on radio signals. Several of these systems have shown very
promising results in terms of achieving high positional accuracy in highly controlled
indoor environments. However, their widespread adoption is limited by the fact that
implementation is typically very resource intensive, including a high density of base
stations and extensive calibration efforts. Several systems also require setting up special-
ized beacons and/or the use of special tags to track mobile devices. As a result these
systems have been mostly targeted at relatively small indoor sites, such as a single
building. Several systems allow for the continuous tracking of assets (people, devices,
goods) within this controlled environment. While these positioning systems are obviously
of great interest for certain applications, they do not lend themselves very well to
complement GPS in order to achieve seamless indoor-outdoor positioning for large
metropolitan-scale areas. For widespread implementation on commercial mobile devices,
WiFi and cellular positioning have emerged as the most viable alternatives at the present
time. The Rosum TV system could become a third alternative but implementation is still
in a pilot stage (Rosum 2008).

1.3 WiFi Positioning

WiFi positioning uses terrestrial based WiFi access points (APs) to determine location.
Over the past several years tens of millions of APs using the 802.11 standard have been
deployed by individuals, homeowners, businesses, academic institutions, retail stores and
public buildings. All of these APs repeatedly broadcast a signal announcing their exist-
ence to the surrounding area. These signals typically travel several hundred meters in all
directions. The density of APs in urban areas is so high that the signals often overlap,
creating a natural reference system for determining location. WiFi positioning software
identifies the existing WiFi signals within range of a WiFi enabled mobile device and
calculates the current location of the device.

Coverage of WiFi positioning is best in heavily populated areas. WiFi APs are
deployed for private and public use to provide high speed wireless coverage inside
buildings and for selected outdoor areas. As a result, WiFi positioning in theory has
excellent coverage and performance indoors. These attributes distinguish it from GPS
which struggles to deliver positioning information in indoor environments. WiFi posi-
tioning does not require that a connection be established to the WiFi network: the WiFi
signals are only recorded in the form of their unique MAC address and signal strength at
a particular location. This allows WiFi positioning to use potentially very weak signals,
as well as encrypted signals, without having to establish a connection.
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Several positioning algorithms have been developed for WiFi positioning. These fall
into the broad categories of geometric techniques, statistical techniques, fingerprinting
and particle filters. Fingerprinting is also referred to in the literature as radio mapping,
database correlation or pattern recognition. For a review of these techniques, see High-
tower and Borriello (2004) and Gezici (2008). While originally developed for indoor
positioning, these have been extended for outdoor use with some modifications. Many of
the geometric and statistical techniques rely on knowledge of the exact location of APs
and/or the ability to model signal strength as a function of distance from the AP’s
location. This is not feasible for metropolitan-scale implementation. First, there are
simply too many APs to consider, typically in the thousands for a single city. Second,
modeling signal strength in a complex and highly variable environment (buildings,
structures, vegetation, vehicles, etc.) is very challenging. As a result, fingerprinting
techniques have emerged as the preferred method for metropolitan-scale WiFi position-
ing, since they do not require the exact location of APs and do not attempt to model
signal strength. Instead, fingerprinting employs a calibration phase (also referred to as the
training or offline phase) in which WiFi signals are observed at known locations. The set
of APs and their respective signal strengths presents a “fingerprint” that is unique to that
location. For large areas these data are collected using a technique known as “wardriv-
ing” – a mobile device with a WiFi receiver (typically a laptop) is hooked up to a GPS
device, and the WiFi signals and GPS coordinates are recorded as the device moves
through an area (typically in a vehicle). In the positioning phase (or online phase) the
observed WiFi signals at an unknown location are compared to the database of previ-
ously recorded fingerprints to determine the closest match. Several matching techniques
have been developed for this, including k-nearest neighbor estimation, support vector
regression, smallest M-vertex polygon, Bayesian modeling, neural networks and kernel-
ized distance estimation (see Roos et al. 2002, Youssef et al. 2003, Kaemarungsi and
Krishnamurthy 2004, Kolodziej and Hjelm 2006, Yim 2008). K-nearest neighbor esti-
mation has been most widely used, in part due to its computational simplicity and in part
because it performs well relative to other techniques (Lin and Lin 2005)

Most of the knowledge on the performance of WiFi positioning has been gained
from studies in well-controlled indoor environments with a very high AP density (e.g.
Mok and Retscher 2007, Wallbaum 2007, Liao and Kao 2008, Manodham et al. 2008,
Yin et al. 2008, Wayn et al. 2009). Performance varies with AP density and distribution,
reliability of the positional reference database, and the positioning algorithm employed,
among other factors. For a single building with a substantial number of APs, median
horizontal accuracies of between 1 and 5 m have been achieved (Mok and Retscher
2007, Wallbaum 2007, Swanguang and Krishnamurthy 2008, Wayn et al. 2009).

The same approach used for indoor WiFi positioning can be employed for outdoor
positioning. While the average AP density (in units per km2) for metropolitan-scale areas
is much lower than a typical indoor environment, AP density in many urban areas is large
enough so that signals from different APs overlap, creating the possibility of a seamless
indoor-outdoor positioning system based on WiFi signals. A pioneering effort in this
regard was made by the Place Lab project of the Intel Corporation. Place Lab developed
a working prototype for Seattle, WA and published several studies on the performance of
WiFi positioning. For a review of Place Lab, see LaMarca et al. (2005) and Hightower
et al. (2006). For well-calibrated areas, Place Lab was able to achieve median positioning
errors of between 15 to 40 m (Cheng et al. 2005). In a comparison of three different
algorithms (centroid, fingerprinting and particle filter) the differences in accuracy
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between algorithms was smaller than between different neighborhoods within the study
area (Cheng et al. 2005). Positional accuracy was relatively robust to changes in the APs
within the study area, to noise in the GPS data in the calibration stage and to a reduction
in the density of the calibration data (Cheng et al. 2005). In short, Place Lab demon-
strated the feasibility of metropolitan-scale WiFi positioning with moderate positional
accuracy using the existing infrastructure of 802.11 APs. The Place Lab project was
terminated in 2005, but the software and documentation remain available.

Several WiFi positioning systems are currently in operation. The most well estab-
lished of these is developed by Skyhook Wireless, which is the system employed on the
3G iPhone. Alternatives include Navizon, WeFi and PlaceEngine. All these systems work
in a similar manner. First, an application needs to be installed on a WiFi enabled device
(or can be integrated into the device’s firmware as is the case with the 3G iPhone). Upon
activation the application records the available WiFi signals and sends this information
to a remote location server. The location server compares the recorded signals to those in
a database and the estimated location is then reported back to the mobile device.

Both Navizon and WeFi rely on the user community to populate the database of
WiFi signals. Users are encouraged to input their (known) location when available, using
a GPS signal or other means, and this is uploaded to a community database. Coverage is
in theory global, but in reality very sporadic based on the contributions of users.
PlaceEngine is a prototype with coverage limited to selected cities in Japan. Skyhook
Wireless by contrast is the only fully commercialized system and employs its own fleet of
data collectors. Coverage includes most urban areas in the U.S., Canada and Western
Europe as well as selected cities in Asia. Skyhook was founded in 2003 and started
creating a commercial WiFi positioning system, building on the efforts of Intel’s Place
Lab project. Skyhook refined the WiFi positioning technology (it holds several patents)
and in 2008 released its hybrid positioning system (XPS) which combines GPS, WiFi and
cellular positioning. Skyhook’s documentation indicates that it’s WiFi positioning algo-
rithms are based on fingerprinting (Figure 1), although the specific algorithms are pro-
prietary. The specific algorithms behind XPS, however, are not described. For example,
Skyhook claims that XPS improves the positional accuracy of WiFi positioning by 50%
by leveraging signals form just two GPS satellites. These hybrid positioning algorithms,
however, are not disclosed and Skyhook’s patents also do not provide further insights
into their workings. The technology developed by Skyhook has been endorsed by several
equipment manufacturers, including Apple (which adopted Skyhook’s system for the
iPhone in 2008) and SiRF (a leading GPS chip manufacturer). Several online services (e.g.
AOL, MapQuest) have also partnered with Skyhook to provide location-aware web
services. Despite the widespread endorsement by industry partners, Skyhook’s WiFi
positioning systems has recently been criticized because it is vulnerable to location
spoofing and location database manipulation attacks (Tippenhauer et al. 2009).

Limited information has been published on the performance of the existing
metropolitan-scale WiFi positioning systems. In fact, since the Place Lab project was
terminated in 2005, most peer reviewed publications on WiFi positioning have been
limited to controlled indoor environments. This is in sharp contrast to the dramatic
growth in the sale of WiFi devices and the rapidly expanding infrastructure to deliver
wireless network service. Navizon (2007) states in its documentation that it achieves an
accuracy of 20 to 40 m, but no actual test data have been published. PlaceEngine includes
the following statement in its documentation: “it is difficult to determine the precise
accuracy of the PlaceEngine service, but to give a rough estimation we believe it to be on
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the order of 5 to 100 m”. WeFi does not make any performance information available.
Skyhook states in its documentation that their WiFi positioning is accurate to within
“20 m, indoors and outdoors” (Figure 2). The only published performance test results
are provided in the form of a white paper (Skyhook Wireless 2008). Testing of positional
accuracy consisted of static point tests (at undisclosed locations) and driving tests in
several cities. Ground truth was determined “using digital maps and aerial photography”
(p. 7). While no systematic accuracy metrics for different test conditions are reported, the

Figure 1 Description of the positioning method behind the WiFi positioning system
(Source: Skyhook Wireless 2008)

Figure 2 Statements by Skyhook Wireless regarding the performance of its WiFi posi-
tioning system (Source: Skyhook Wireless 2008)
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general conclusion was a median accuracy in urban canyons of 20 to 30 m with
availability >97% and time-to-first-fix <1 second. In several tests the WiFi positioning
system was found to be more accurate than a handheld GPS receiver (Garmin eTrex with
SiRF III chip).

1.4 Cellular Positioning

Cellular networks have quickly developed into an extensive wireless communication
infrastructure with almost worldwide coverage. Cellular service areas are divided into
cells and each of these cells has a base station (cellular tower) associated with it.
Techniques have been developed to track a mobile client when it is moving through the
network. These location management techniques rely on the two-way communication
between the mobile device and the network. When a user connects to the network, the
mobile device is allocated to the base station transmitting with the strongest field
strength. The most basic form of cellular positioning is to use the (known) location of this
base station. This method is known as cell identification (cell ID). Location accuracy
depends solely on the cell size, but this can be enhanced with support of other techniques.
For example, some cells are divided into different sectors by directional base station
antennas which can substantially reduce positional error. Further improvements can be
achieved by using the received signal strength, although signal strength can vary consid-
erably due to fading, topography, obstacles and other factors. Finally, cell ID techniques
can be improved by using the timing advance that is calculated by the base station. These
techniques are referred to as enhanced cell ID or E-CID.

When a mobile device is within range of multiple base stations, more complex
positioning algorithms can be employed, mostly relying on Time Difference of Arrival
(TDOA). For a review see Chapter 8 in Bensky (2008). Positional accuracy of these
techniques depends on the density of base stations and the reliability of time of arrival
measurements. The latter factor is in turn dependent on the bandwidth of the cellular
signal, making the Global System for Mobile Communications (GSM) signal potentially
more accurate than the Code Division Multiple Access (CDMA) signal. Angle of Arrival
(AOA) is another algorithm adopted by cellular service providers, but is not as widely
implemented. Fingerprinting techniques have also been developed for cellular positioning
similar to those discussed for WiFi positioning (e.g. Juurakko and Backman 2004, Chen
et al. 2006). Due to the effort involved in calibration, however, fingerprinting has not yet
been adopted by any of the major cellular service providers.

Whatever specific positioning algorithm is used, the positional accuracy of cellular
positioning depends greatly on the density of base stations. Horizontal error has there-
fore been found to vary greatly across urban-rural gradients, with a median error in the
order of 50 to several hundred meters in urban areas and in the order or several hundred
meters to several kilometers in rural areas (e.g. Weiss 2003, Lin and Juang 2005, Mohr
et al. 2008). In one of the more comprehensive recent studies by Mohr et al. (2008) using
three different cellular operators in the U.K., the median error was 246 m in a dense
urban setting and 626 m in a rural setting.

Notwithstanding recent refinements in positioning algorithms, there are fundamen-
tal limits to the accuracy that can be achieved with typical densities of cell towers
(Gustafsson and Gunnarsson 2005). This has been widely recognized by cellular provid-
ers and hence the adoption of A-GPS as the technology of choice to meet the FCC
requirements for positioning. Nevertheless, cellular positioning remains of interest since
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it may be available when other signals are not, as well as for older devices that are not
A-GPS and/or WiFi enabled. As a result, the refinement of algorithms for cellular
positioning remains an area of active research (e.g. Schwaighofer et al. 2003, Otsason
et al. 2005, Chen et al. 2006).

The cellular positioning implemented on Apple’s 3G iPhone is based on Google
Mobile Maps. Limited information is published on the performance of this particular
version of cellular positioning, but Google’s description suggests it is based on cell ID.

1.5 iPhone Locations

When the iPhone was first released on 29 June 2007, it was met with rave reviews and
quickly became a commercial success. While it was not the first smart phone on the
market, its unique design, multi-touch screen, virtual keyboard and built-in functionality
certainly raised the expectations as to what a smart phone should be capable of. Sales of
the iPhone reached 17.4 million by December 2008, making Apple the third largest
mobile manufacturer after Nokia and Samsung.

One of the substantive criticisms of the original iPhone was the fact it had no built-in
A-GPS capability. This changed with the release of the 3G iPhone on 11 July 2008 which
included a hybrid positioning system consisting of A-GPS, WiFi and cellular positioning.
While each of these techniques was previously available separately for mobile devices, the
3G iPhone was the first consumer device to employ the hybrid positioning system. To
implement the 3G iPhone’s hybrid positioning system, Apple teamed up with Skyhook
Wireless and Google. Previously Apple and Skyhook had teamed up to deliver WiFi
positioning for the regular iPhone (without A-GPS).

From a user’s perspective the positioning system of the 3G iPhone switches seam-
lessly between the three positioning modes. When a reliable A-GPS position fix is
available, the location service publishes latitude, longitude, altitude and an estimate of
positional error. On the default mapping application (Google Maps), this position is
indicated by a bright blue dot with a pulsating blue location circle around it (Figure 3a).
A transparent blue disc is shown to indicate the estimated positional error, although this
is often invisible behind the bright blue dot depending on the display scale. When a
reliable A-GPS position fix is not available the positioning mode is switched to WiFi, and
when no reliable WiFi position fix can be obtained the positioning mode is switched to
cellular. For both WiFi and cellular positioning the location service publishes latitude,
longitude and an estimate of positional error – but no altitude. On the default mapping
application the WiFi and cellular position fix is shown as a blue location circle with tick
marks in the four cardinal directions. The circle is centered on the estimated position, but
this location itself is not highlighted directly (Figures 3b and 3c). The diameter of the
circle corresponds to the estimated positional error. Without additional knowledge a
typical user cannot determine whether a WiFi or cellular position fix is used, although the
size of the circle for cellular positioning is typically much larger (at the same scale).

While the iPhone was selected for this particular research effort, other smart phones
have adopted a similar approach to using a hybrid positioning system, including the G1
phone released in October 2008 by T-Mobile and Google.

One of the strengths of the iPhone platform is that it is relatively easy to develop
applications which can be distributed through the App Store in iTunes. Apple has
released a Software Development Kit (SDK) for developers and a number of third-party
manuals have appeared to support application development. Developing applications
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that use the hybrid location service is relatively easy. Since the release of the 3G iPhone
in July 2008 there has been a dramatic increase in the number of applications that use the
location service. As of April 2009 there were more than 1,900 such applications in the
App Store including local searches, navigation/routing, social networking and many
others. The Android platform on the G1 phone provides similar possibilities. As of April
2009 nearly 300 applications had been developed using the location service of the G1
phone.

The hybrid positioning system of the 3G iPhone was featured prominently on the
cover story of the February 2009 issue of Wired magazine. In a brief explanation of
the three positioning modes the positional accuracy was characterized as 10 m for
A-GPS, 30 m for WiFi positioning and 500 m for cellular positioning, although no
sources or test results were reported. In fact, to date there have been no published
studies on the performance of the hybrid positioning system of the iPhone (or the G1
phone). Apple, Skyhook and Google have not published any test results of the iPhone’s
performance. Several iPhone blogs have postings on user experiences, but do not
include any specific accuracy evaluations. The blogs and other published material also
reveal a substantial degree of confusion about how the hybrid positioning systems
works. Many users for example did not realize that getting an A-GPS position fix
indoors is often impossible. One published manual in fact explained (incorrectly) how
WiFi positioning on the iPhone is based on the IP address and therefore inaccurate by
several miles. Some users also expressed frustration with the accuracy of the locations.
Specifically, when cellular positioning is employed the area covered by the blue loca-
tion circle can be as large as several square kilometers, which may not be very infor-
mative based on a user’s needs.

The current study is designed to determine the performance of the hybrid positioning
system on the 3G iPhone. The emphasis is on the positional accuracy of each of the three
positioning modes under static conditions. Other aspects of the iPhone positioning

a b c

Figure 3 Positioning modes of the 3G iPhone: (a) GPS position; (b) WiFi position; and (c)
cellular position
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system, including switching between positioning modes, time-to-first-fix, coverage, reli-
ability under variable field conditions, battery usage, etc. are not addressed in the current
study.

2 Data and Methods

A 3G iPhone was used to collect locations using three different modes: Assisted GPS,
WiFi and cellular positioning. The 3G iPhone has a built-in location service which can be
utilized by third-party applications. The location service provides coordinates in the
format of latitude/longitude and also an altitude when the A-GPS mode is employed.
Since only a single positioning mode is provided at any particular time, this presents some
challenges for comparative analysis. Therefore, the following strategy was adopted.
A-GPS locations were collected at outdoor sites under ideal conditions, i.e. excellent
satellite visibility. WiFi and cellular positions were collected at indoor sites where A-GPS
position fixes were not available. Switching between these two positioning modes was
accomplished by turning the iPhone’s WiFi receiver on and off – when no A-GPS or WiFi
is available, the iPhone’s location service defaults to cellular positioning. A third-party
application was used to record the locations as waypoints and these were transferred to
GIS software for processing. What follows are the specific details on the collection and
processing of the data for each positioning mode.

2.1 A-GPS Positions

Locations in A-GPS mode were collected outdoors at 10 different surveyed benchmarks
within the Albuquerque, NM metropolitan area. Appropriate benchmarks were selected
from the Albuquerque Geodetic Reference System (AGRS). All benchmarks (n = 853)
were plotted and overlaid on 6-inch color orthophotos from 2006. Datasheets for all
benchmarks were also obtained and reviewed. Benchmarks with poor visibility as deter-
mined from the orthophotos and the obstruction diagrams in the datasheets were
removed from the sample, as well as all those benchmarks in unsafe locations (e.g.
located in the median of a road or very close to a road). From the remaining benchmarks
a random sample of 10 was selected with the additional condition that no two bench-
marks could be closer together than 1 km. For each benchmark the datasheet included
the Northing and Easting in U.S. survey feet (in the State Plane coordinate system, New
Mexico Central, NAD83) as well as ellipsoidal and orthometric heights.

At each of the 10 benchmarks, position fixes were recorded using both the 3G
iPhone in A-GPS mode and a Garmin GPSMAP 60Cx unit (with a SiRF III chipset) in
autonomous mode. Both units were placed vertically in a mount attached to the top of
a survey tripod. The tripod was placed level directly over the benchmark and the height
from the survey disk to the top of the antennae was measured. The units were placed at
the same height, at opposite sides of the survey pole, approximately 5 inches apart
horizontally. The horizontal displacement of the antennae relative to the center of the
survey pole was not considered in the analysis since it contributed very little to the overall
positional error, expected to be in the order of several meters.

Position fixes were logged with both units every 5 seconds for 20 minutes, resulting
in 240 positions for each unit at each benchmark. The default WGS84 datum was used
for both units. Locations were plotted in ArcGIS 9.3 and projected in the State Plane
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coordinate system of the benchmark datasheets using the appropriate datum transfor-
mation. Northing, Easting and altitude for each position fix were compared to the values
for these parameters reported in the datasheets. Corrections were made for the antenna
height, as well as for the fact that the iPhone’s A-GPS records altitude in ellipsoidal height
while Garmin units records orthometric height. The distributions of horizontal and
vertical error values were characterized using percentiles and Root Mean Square Error
(RMSE) for both units at each of the 10 benchmarks.

2.2 WiFi and Cellular Positions

WiFi and cellular positions were collected at indoor sites where no A-GPS position fix
could be adopted. To determine suitable locations for indoor sites, the following sam-
pling strategy was obtained. First, a data file of address points was obtained from the
City of Albuquerque – this includes the location of every occupied building within the
city limits. Using the zoning information in the parcel data all commercial and institu-
tional properties were selected since access to those locations would be easiest. A random
sample of 65 properties was obtained, with the additional conditions that no two
locations could be closer together than 300 m. These 65 locations were visited in the
field. If access to the particular building was restricted or impractical, a new random
location was selected. If an A-GPS position fix could be obtained inside the building,
preventing the use of WiFi and cellular positioning on the iPhone, a new random location
was chosen. In total 87 buildings were visited with 22 resulting in an A-GPS position fix.
Only the results for WiFi and cellular positions at the remaining 65 locations were used
in the analysis.

Within each building a location was selected that could easily be recognized on the
6-inch color orthophotos from 2006, for example, near an entrance, window, or corner.
A laptop preloaded with the orthophotos was used in the field to digitize the estimated
location of the indoor sites. At each location a single WiFi and cellular position fix was
recorded. In the initial testing phase multiple position fixes were recorded at 5 second
intervals, but these turned out to be identical (to 6-decimals in lat/long format) for each
positioning mode. As a result, only a single position fix was recorded in the final field
data collection effort. The field laptop was also used to confirm the availability of WiFi
positioning at each indoor site. To access the WiFi positioning system without having to
rely on connections to potentially weak or encrypted WiFi networks, the laptop was
equipped with a cellular broadband Internet connection. The WiFi positions obtained
using the laptop were not used in the analysis, but only served to confirm the availability
of the WiFi positioning system. When A-GPS and WiFi positioning are not available, the
iPhone defaults to cellular positioning and the logged positions of WiFi and cellular
positioning on the iPhone are indistinguishable (in contrast to A-GPS positions). When
no A-GPS fix can be obtained and the WiFi receiver is turned off and cellular positioning
is not available, the iPhone’s location service reports an error. So at each indoor site the
availability of both the WiFi and cellular positioning was recorded as well as the position
fix for each positioning mode when available.

Processing of the position fixes of WiFi and cellular positioning was similar to the
procedure described for A-GPS position fixes, with the exception of the altitude infor-
mation since this is not reported for these two modes. Since only a single position is
recorded at each of the 65 indoor sites, accuracy statistics were determined for the
combined set of positions.
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3 Results

3.1 A-GPS Positioning

For the ten 20-minute field tests under ideal conditions both the iPhone in A-GPS mode
and the Garmin unit in autonomous mode were able to log valid position fixes 100% of
the time, confirming excellent availability. Figure 4 shows an example scatterplot of a
single 20-minute field test. The Garmin position fixes are strongly clustered close to the
benchmark location with a maximum horizontal error of approximately 1.4 m and a
RMSE of 1.0 m. The A-GPS position fixes reveal a much greater spread with a maximum
error of 18.5 m and a RMSE of 8.3 m. The A-GPS positions also reveal a “gridded”
pattern. While the original coordinates in decimal degrees are logged with six decimals,
the de facto precision of the A-GPS coordinates is only 1 to 2 m which corresponds to five
decimals. This is relatively common in older models of consumer grade GPS receivers,
but newer models record with a precision of six or seven decimals. This gridding also
explains that visually there appear to be much fewer than 240 positions since many have
identical coordinates. While this results in a somewhat peculiar pattern, the typical error
for the A-GPS positions is much greater than this precision and hence the truncation to
five decimals does not appear to influence positional accuracy very much.

Results such as those reported for a single test in Figure 4 were obtained for every
one of the 10 outdoor tests, in addition to the results for altitude. Values for the 68th

percentile and RMSE were consistently similar across the tests for the two units, and
therefore the error distributions were considered to be fairly close to normal (see
Zandbergen 2008). Table 1 summarizes the horizontal and vertical errors reported as the
median and RMSE values for the 10 tests. Results reveal that both the horizontal and
vertical errors for the iPhone’s A-GPS positions are consistently much larger compared to

Figure 4 Horizontal accuracy of iPhone A-GPS and Garmin autonomous GPS locations
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those for the Garmin’s autonomous GPS positions. The average horizontal RMSE of
9.0 m for the iPhone is more than five times the value of 1.6 m for the Garmin unit and
the average vertical RMSE of 10.6 m for the iPhone is more than three times the value
of 3.1 m for the Garmin unit. Statistical testing of the difference between the RMSE
values using a two-sample t-test showed a statistically significant difference for both
horizontal (t = 7.032, p < 0.001) and vertical (t = 5.964, p < 0.001) accuracy.

Despite the relatively poor positional accuracy compared to the Garmin unit, the
performance of the iPhone’s A-GPS positioning was fairly consistent. For example, the
largest error observed in all tests combined (2,400 positions total) was 27.7 m horizontal
and 48.4 m vertical, which easily meets the FCC positioning requirements. For most LBS
purposes a positional error of up to 20 m or so is also quite acceptable, but it clearly does
not come close to the performance of a dedicated GPS receiver under ideal outdoor
conditions.

3.2 WiFi and cellular positioning

The results for WiFi and cellular positioning are summarized in Table 2. WiFi positioning
was not able to determine a position fix at eight locations, resulting in an availability of
87.7%. At five locations no WiFi signals were available as determined by using a laptop.
At three locations WiFi signals were available, but no WiFi position fix could be achieved
after repeated attempts. Cellular positioning failed at only one location, resulting in an
availability of 98.5%.

In terms of positional accuracy only horizontal error was determined, since no
elevation data is provided as part of WiFi or cellular positioning. Table 2 reports the

Table 1 Horizontal and vertical positional accuracy for iPhone locations in A-GPS mode
and Garmin locations in autonomous mode under ideal outdoor conditions

Site ID

Horizontal Error (m) Vertical Error (m)

Garmin iPhone Garmin iPhone

Median RMSE Median RMSE Median RMSE Median RMSE

#1 1.1 1.1 5.2 6.2 1.3 1.4 4.4 5.6
#2 0.8 1.1 10.1 12.4 3.3 3.1 6.4 9.6
#3 0.6 0.7 5.9 7.3 1.3 1.3 5.2 8.1
#4 2.5 2.6 8.1 9.0 8.8 9.0 9.7 11.7
#5 0.4 0.5 7.7 7.6 2.5 2.7 8.7 11.1
#6 1.0 1.6 12.6 15.5 4.5 4.3 10.1 17.3
#7 2.1 2.2 5.2 6.1 1.6 2.0 10.6 11.6
#8 3.4 3.4 11.2 11.4 4.5 4.4 7.4 10.0
#9 0.9 1.7 4.3 5.8 1.4 1.3 4.9 7.5
#10 1.0 1.0 6.9 8.3 0.9 1.4 12.1 13.6
Average 1.4 1.6 7.7 9.0 3.0 3.1 8.0 10.6
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error statistics and Figure 5 summarizes the results in a cumulative frequency distribu-
tion. WiFi positioning has a median error of 74 m and is clearly much more accurate than
cellular positioning with a median error of 599 m. Figure 5 also shows that the error
distribution is not normal as a result of a relatively small number of very larger error
values. The RMSE value is very sensitive to these outliers as illustrated by the fact the

Table 2 Positional accuracy of iPhone locations by using WiFi and cellular positioning

WiFi Positions Cellular Positions

Number of observations 65 65
Number of valid position fixes 57 64
Percent valid fixes 87.7% 98.5%
Horizontal error (m)

Minimum 16 30
Maximum 562 2,731
Median 74 599
68th percentile 88 827
RMSE 128 962

# Observations with error <20 m 3 0
# Observations with error <50 m 15 1
# Observations with error <100 m 41 3

Figure 5 Cumulative distribution function of the positional error in WiFi and cellular
positioning
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RMSE values are much larger than the 68th percentile. The RMSE value therefore
becomes somewhat unreliable as a metric to summarize the error distribution (Zandber-
gen 2008) and the median error and 68th percentile should be used instead. Despite the
fact that WiFi positioning is generally much more accurate than cellular positioning, at
three locations cellular positioning was more accurate.

The results for the accuracy of the WiFi positioning system are in sharp contrast to
those reported by Skyhook Wireless (2008). While Skyhook’s WiFi positioning system is
stated to provide 20 m accuracy, only 3 of 57 observations were found to be within 20 m
of the reference location. The median error of 74 m determined in this study is several
times larger than the 20 to 30 m reported by Skyhook.

To examine the spatial pattern in the performance of WiFi positioning, Figure 6
shows the field locations employed in the study. The eight locations where no WiFi
position could be determined are located throughout the study area and do not appear
to be concentrated in outlying lower density areas. Similarly, there is no clear spatial
pattern in the positional error of WiFi positioning, with both high and low values
spread throughout the study area. It should be noted that the 57 valid WiFi position
fixes resulted in 57 unique coordinate pairs. This is in contrast to cellular positioning
where 64 valid position fixes resulted in only 51 unique coordinate pairs: several
position fixes at locations in relatively close proximity resulted in identical coordinates
(to six decimals in decimal degrees). Only one cellular position corresponded exactly to
the location of a known cellular tower, which suggests that the positioning algorithms
may rely on cell tower locations of relatively poor positional accuracy or at least in
part on enhanced cell ID techniques using cell tower sectors as opposed to strictly cell
ID positioning.

Given the large observed positional errors of WiFi positioning relative to published
accuracy metrics, the nature of this positional error was examined in more detail.
Figure 7 shows four close-up examples of the results of WiFi positioning, including a
range of different error values. In the case of Figures 7a and 7d, the estimated position
lies exactly at the road median and this is the case for nearly half of all observed WiFi
positions. It appears as if the location estimates are “snapped” to the road network. In
the case of Figures 7b and 7c, the estimated location does not lie exactly on the road, but
does appear to be influenced by a similar effect.

4 Discussion and Conclusions

The performance of A-GPS on the iPhone at outdoor locations was substantially less than
that achieved using dedicated consumer-grade GPS receivers. While availability of A-GPS
was 100%, the positional error for A-GPS was quite a bit larger compared to autono-
mous GPS. The average RMSE value for ten 20-minute tests was 9.0 m horizontal and
10.6 m vertical, several times larger than those for the consumer-grade GPS receiver. This
can likely be attributed to the concessions that are made in the design of the A-GPS
hardware on the iPhone, including antenna, power and other considerations. The
observed gridding of the data is likely a result of a truncating or rounding step in the
processing of the position fixes by the GPS location server. While this creates a somewhat
odd-looking scatterplot, this lack of precision in the coordinates does not have a sub-
stantial impact on the positional accuracy and is similar to the pattern observed in older
and low-cost GPS receivers.
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The performance of WiFi positioning on the iPhone at indoor locations was sub-
stantially less than the performance of A-GPS outdoors and in fact was far below
expectations based on published performance measures by Skyhook Wireless (2008).
Claims that WiFi positioning is able to acquire a location nearly 100% of the time in
urban settings could not be confirmed and only 87.7% availability was achieved. Claims
that WiFi positioning is able to achieve a median horizontal accuracy of 20 to 30 m could
not be confirmed and a much larger median error of 74 m was found based on 57
observations. The 68th percentile was 88 m and the RMSE value was 128 m. No vertical

Figure 6 Spatial distribution of positional error of WiFi positioning

20 P A Zandbergen

© 2009 Blackwell Publishing Ltd
Transactions in GIS, 2009, 13(s1)



position can be estimated using WiFi positioning. The spatial pattern in the positional
error suggests that the nature of the calibration effort greatly influences positional
accuracy. Calibration data is collected by driving a vehicle on public roads. A substantial
number of WiFi positions appear to be “snapped” to the road network, indicating that
the positioning algorithms employed (a proprietary version of fingerprinting) are not able
to reliably estimate locations at some distance from roads with the calibration data
available.

Figure 7 Examples of positional error in WiFi positioning
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Availability of cellular positioning on the iPhone at indoor locations was 98.5%,
substantially higher compared to WiFi positioning at the same locations. Positional
accuracy was much lower than for WiFi positioning, but similar to the results published
by previous studies on cellular positioning (e.g. Mohr et al. 2008). Median horizontal
error was 599 m, the 68th percentile was 827 m and the RMSE was 962 m based on 64
observations. The spatial pattern of cellular positions suggest that relatively simple
positioning algorithms are employed (i.e. cell ID), which do not perform as well as other
more complex algorithms.

There are several limitations to the current study. First, only a single metropolitan
area was used in the field data collection. While this is not so much a concern for the
evaluation of A-GPS, the accuracy of WiFi and cellular positioning is expected to be
related to the density of APs and cell towers, respectively, as well as the rigor of the
calibration effort and the time since the last calibration. However, there are no indications
that the Albuquerque area has a low density of APs or cell towers, or suffers from poor
calibration compared to other metropolitan areas. Based on ongoing research using WiFi
positioning on a laptop throughout locations in Albuquerque there are very few locations
reporting fewer than five APs (unpublished data). Based on records from the FCC, the
City of Albuquerque (488 km2) contains a total of 82 antenna structures (mostly in the
urban core) and an additional seven standalone cell towers (mostly in outlining areas).
These densities are comparable to those in other urban areas. As far as the calibration
effort goes, that information is not available. However, the coverage maps provided by
Skyhook Wireless include the entire City of Albuquerque and surrounding urbanized
areas, with the exception of a few large areas of open space where no indoor locations
were selected as part of this study. The selection of locations where WiFi signals are not
very likely was also prevented by using only commercial and institutional buildings in the
sampling. A second limitation is the fact that only static conditions were evaluated. It
would be meaningful to compare the performance of the positioning methods under
dynamic conditions, such as driving through an urban canyon, or walking from outdoors
to indoors and back. A third limitation is that A-GPS was only evaluated under ideal
conditions. Since it is not possible to disable A-GPS positioning on the iPhone when an
A-GPS position fix is available, a direct comparison of the three positioning systems under
more challenging conditions (urban canyons, indoors) is not possible using only the 3G
iPhone. Modifications to the iPhones’s firmware or the use of multiple devices with
different capabilities would be required for such a comparison. Finally, only a single type
of device was employed and the results for other A-GPS enabled devices or other WiFi and
cellular software platforms may be somewhat different.

WiFi and cellular positioning were able to obtain a position fix at most of the indoor
sites where A-GPS failed. This result confirms the promise of the hybrid positioning
approach. However, the positional error for both techniques is substantial and, for the
WiFi positions in particular, much larger than published performance metrics indicate.
Both developers and users of LBS on mobile services should be cautious when these
services are based on non-GPS positions.

The somewhat disappointing results for WiFi positioning warrant further discussion.
The first potential reason for the relatively poor accuracy is that calibration data is only
collected along public roads, which prevents the fingerprinting algorithms to produce
reliable position estimates at some distance from a road. When APs are located on either
side of a road, war driving along the road does not allow for determining on what side
of the road the AP is located on unless it is also picked up from another road at a different
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angle. This ambiguity evidently introduces substantial error in the fingerprinting algo-
rithm. This is consistent with the findings of Kim et al. (2006) who found a substantial
improvement in the accuracy of outdoor WiFi positioning when regular wardriving was
supplemented with data collection on foot around and between buildings, and a further
improvement when the known locations of APs were used instead of the estimated
locations based on the calibration data. The second potential reason is that the finger-
printing algorithm is based on the assumption that the observed WiFi signals correspond
closely to those recorded in the calibration phase. APs change over time through addi-
tions, removals and changed locations. The reliability of fingerprinting therefore is
expected to decrease as the calibration data ages. Skyhook does not reveal when a
particular area was last covered in field calibration efforts, but this could definitely be a
factor. A third potential reason is that radio signal propagation suffers from time-
correlated fading effects, resulting from the interference from other devices, multi-path
effects, changes to buildings and natural features, and the presence of moving objects.
This means that observed signal strengths may deviate significantly from those recorded
during the calibration phase (e.g. see Yin et al. 2008). This is an inherent limitation of
static fingerprinting techniques and it is not well known how much of a factor this is for
outdoor WiFi positioning. Finally, the only two published studies on the performance
of metropolitan-scale positioning (Cheng et al. 2005, Skyhook Wireless 2008) were
potentially biased in the sense that their field testing followed the exact same roads where
calibration data had been collected. Results from these previous studies were therefore
likely much too optimistic about the positional accuracy that can be achieved at locations
at some distance from roads.

Determining the relative importance of the factors that contribute to the perfor-
mance of WiFi positioning would be a worthwhile effort. For example, at present it is not
well known which strategy would be most effective in improving the positional accuracy
of WiFi positioning. More frequent wardriving? More intensive wardriving? Collecting
data on foot in and around buildings? More refined positioning algorithms? While all of
these efforts should contribute to improved positional accuracy, their relative importance
is not well understood.

There have been substantial efforts in recent years to refine WiFi positioning for
controlled indoor locations, including the development of novel approaches to fingerprint-
ing (e.g. Kushki et al. 2007), development of time-of-arrival techniques (e.g. Golden
and Bateman 2007), and modeling the performance of WiFi positioning systems (e.g.
Swangmuang and Krishnamurthy 2008). Metropolitan-scale WiFi positioning, however,
has received very limited attention from the research community. In fact, since the Place
Lab project was terminated in 2005 there have been virtually no peer reviewed publica-
tions on the subject. Given the widespread adoption of WiFi positioning on a range of
mobile devices, future research in this area should try to extend the recent progress made
in controlled indoor environments to larger indoor/outdoor environments.
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