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In recent years, mosquito-borne diseases such as the Zika virus, West 
Nile virus, Chikungunya virus, Dengue, and Malaria have become more 
prevalent in urban areas due to various climate and anthropogenic 
factors. This led to a greater need for mosquito abundance prediction to 
improve the response to disease outbreaks, especially during the 
summer when mosquito season peaks and outdoor activities increase 
significantly. The objective of this study was to evaluate the accuracy of 
six machine learning models for classifying extreme mosquito 
abundance events based on climate data. Data sourced from the 
Mosquito Habitat Mappers challenge on GLOBE and a City of Chicago 
dataset were matched to area-averaged time-series climate data for 
Chicago from GIOVANNI, a NASA open access remote sensing database 
for Earth science. Data was cleaned and then aggregated to a single 
weekly time-series dataset consisting of mosquito abundance, and the 
past week’s three climate variable averages. The models were trained 
and tested on climate data, namely surface humidity, precipitation, and 
daytime temperature. The mosquito and climate data were recorded 
from five Chicago summers. The results indicated that the best models 
for predicting mosquito abundance events were the ensemble learning 
methods of AdaBoost and Random Forest, respectively. Future avenues 
of research include using other, more-specific factors for prediction such 
as the chlorophyll from algal blooms (increasingly common due to direct 
and indirect anthropic activities, such as fertilizer runoff and warming 
waters due to climate change), more localized predictions, accounting for 
the microclimates of urban areas, and using regression models to predict 
precise mosquito numbers.

Mosquito-borne diseases account for over 17% of all infectious diseases 
and cause more than 700,000 annual deaths according to (World Health 
Organization [WHO], 2020). In fact, (National Association of County & 
City Health Officials [NACCHO], 2017) found in a survey that 84% of 
surveyed vector-control operations are lacking in at least one out of the 
five core competencies of vector-control. Chicago is one city that 
experiences mosquito-borne diseases, particularly the West Nile Virus. 
Instances such as the Chicago West Nile Virus outbreak of 2002 as well 
regular cases of the virus occur in the City of Chicago. The virus affects 
the urban and suburban areas of Chicago and is a very serious illness. 
The prevalence of the West Nile Virus has been shown in (Tedesco et al., 
2010). . The influence of temperature was shown to be significant and 
mostly positive, augmenting growth rates of populations (Paz, 2008): 
warming of the mosquito environment boosted their rates of 
reproduction and number of blood meals, prolonged their breeding 
season, excluding the case of extreme temperatures exceeding 
mosquitos’ survivability limits (Drakou et al., 2020). Mosquitoes become 
inactive to maintain body fluids and reduce energy use in low humidity 
environments. As a result of the insufficient treatment methods and 
prevalence of mosquito-borne disease outbreak in urban areas, a 
method of predicting mosquito abundance is vital to preventing the 
spread of disease. Much of recent research in this area has applied 
machine learning to this task because some machine learning 
algorithms, particularly supervised machine learning algorithms, are 
efficient at modeling relationships between features. Most past studies 
that utilized machine learning for disease prevention utilized only the 
Neural Network and Support Vector Machine (SVM) machine learning 
models according to (Schaefer et al., 2020). Machine learning has also 
been used to predict mosquito abundance based on socioeconomic and 
land cover data such as that of (Chen et al., 2019). The goal of this study 
is to compare the performance of the  predictions of mosquito 
abundance of six machine learning algorithms learning off of the climate 
variables of temperature, humidity, and precipitation.

Both climate and mosquito 
data used in this study were 
obtained for the Chicago area 
with the bounding box of 
-87.9110W, 41.60581N, 
-87.4606W, 42.0417N. The 
climate data obtained from 
GIOVANNI was Area-Averaged 
for the bounding box

Predicting mosquito abundance in urban areas is important as 
preventative measures can be taken to stop the abundance, and thus 
potentially stop an outbreak of a mosquito-borne disease. The findings 
show the need for high-quality, public citizen science datasets that can be 
used for data analysis to increase scientific knowledge and solve local 
problems. In the future, using sensor data at traps for recording climate 
data, regression analysis to predict precise numbers, and using satellite 
imagery to identify potential mosquito habitats. Furthermore, other 
factors could be used to predict mosquito abundance such as chlorophyll, 
an indicator of algal blooms and eutrophication, and socioeconomic 
factors such as housing prices as they are extremely variable factors in 
Chicago (Chen et al., 2019; Schelske & Stoermer, 1971). Future GLOBE 
protocols that could be used include land cover for mosquito habitat 
prediction, pedosphere protocols for soil characterization, and other 
hydrosphere protocols utilizing fluids variables such as nitrates and pH
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Fig. 3. GLOBE Data Visualization of the Mosquito Habitat protocol locations for the five 
Chicago summers from 2017 to 2021, (“GLOBE Program”).

Fig. 1. Bounding box of Chicago used for mosquito habitats and area-averaged remote sensing 
climate data as shown in the GIOVANNI interface, (“Giovanni”).

Fig. 2. City of Chicago Data Portal of mosquito observation locations for the five 
Chicago summers from 2017 to 2021, (City of Chicago, 2022).

Mosquito data counts were then obtained via regular (weekly) mosquito 
trap measurements in the Chicago area recorded using the GLOBE 
Habitat Mapper protocol as well as regular (weekly) mosquito trap 
measurement measured and recorded in the City of Chicago data portal.

Fig. 4. Chicago area-averaged time-series of the average surface relative humidity 
from the beginning of 2017 summer to the end of 2021 summer. Graph created by 
authors; data retrieved from GIOVANNI, (AIRS Science Team & Teixeira, 2013).

Fig. 5. Chicago area-averaged time-series of the average surface air temperature from 
the beginning of 2017 summer to the end of 2021 summer. Graph created by authors; 
data retrieved from GIOVANNI, (AIRS Science Team & Teixeira, 2013).

Fig. 6. Chicago area-averaged time-series of the daily precipitation from the 
beginning of 2017 summer to the end of 2021 summer. Graph created by authors; 
data retrieved from GIOVANNI, (Huffman et al., 2019).

Remote Sensing climate data for 
temperature, humidity, and 
precipitation were obtained, 
cleaned, and finally aggregated into 
weekly averages. The result of this 
process was a weekly mosquito 
count, temperature, humidity, and 
precipitation.

Using the Orange Data 
Mining software, data were 
split into 70% training on data 
and 30% for training data, 
normalized for increased 
effectiveness, and put 
through the machine learning 
pipeline for 6 different 
supervised machine learning 
classifiers.

A mosquito abundance boolean is added to the dataset where over 
1386.743 mosquitoes (the average, assuming mosquito frequency for a 
timeseries is a Poisson distribution). 

Fig. 7. The six machine learning models used in Orange Data Mining. Image from (Demsar, 2013).

Fig. 8. Confusion matrix (a matrix generated for the testing data of each of the machine learning models) . Image 
generated using (Codecogs).

The confusion matrix 
values are used to 
calculate the 
performance scores: 
AUC, Classification 
Accuracy, Precision, 
Recall, and F1 Score
For more details describing calculations of these scores,  see 
research report.

Table. 1. Comparison of the performance off six different classification machine learning models  as measured by the five standard classification metrics. The highest performing models 
are AdaBoost, followed closely by Random Forest.

Fig. 9. Comparison of the six machine learning models under the five classification metrics from Table 1 in the form of a bar graph.

Discussion

All six models performed well with classification accuracies above 75%. 
Algorithms that performed the best were the ensemble learning 
algorithms of the Random Forest classifier (with a classification accuracy 
of 94.4%) and the AdaBoost classifier (with a classification accuracy of 
99.6%). AdaBoost is known to have low generalization error, which 
means that the algorithm is much less prone to overfitting and performs 
better classification on previously unseen (testing) data. This 
phenomenon was noted in (Vezhnevets & Vezhnevets, 2005). The 
Random Forest classifier may have also performed well because of its 
ability to balance data, as stated in (More & Rana, 2017), when the 
amount of data in one class outnumbers the amount of data in another 
class, as it it did in this study. The Neural Network, SVM, and k-NN 
performed the worst. (Oleinik, 2019) states that because neural 
networks are good at identifying patterns in structured data, they are 
limited when they must combine pattern combination and recognition. 
According to (Yadav, 2018), SVM is less effective in low-dimensional 
spaces, so the use of only three climate variables may have limited the 
model’s effectiveness. Finally, the k-NN classifier’s performance may be 
limited to redundant features in the data as all features contribute 
similarly as noted in (Imandoust & Bolandraftar, 2013). Some possible 
sources of error include missing climate data values and confounding 
variables on mosquito traps (like urban microclimates, river 
eutrophication, and human activity). Future studies should collect 
mosquito data for the study itself. Similar studies to this one include 
(Chen et al., 2019), which predicted abundance with machine learning 
based on socioeconomic and land cover factors in Charlotte, NC and 
(Gardner et al., 2013), which correlated vegetation and focused on spatial 
distribution in basins in Chicago, IL.
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GIOVANNI data was missing values and did not include errors and mosquito measurements might be influenced by confounding variables that are not 
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data options were incompatible with our study such as climate data being recorded every 8-days instead of 7-days, which led us to averaging the daily 
values of a climate variable each week. In addition, this study uses the data with machine learning models to make inferences (predictions) about 
mosquito abundance events in the future. These inferences are made at a high accuracy and various standard classification metrics and statistical concepts 
are used to evaluate each model’s performance in predicting mosquito abundance in Chicago. Our data analysis aimed to solve the problem of 
mosquito-borne disease outbreaks in urban areas as predicting mosquito abundance and thus enacting preventative measures can stop the spread of 
mosquito-borne diseases.
I am a Collaborator: As we (the authors) come from completely different backgrounds and parts of the world spanning three different time zones, we 
each brought our own skills which were vital to completing this project. This project required the integration of many skills including machine learning, 
mosquitoes, data analysis, literature review, scientific writing, and climatology. S.D. has a background in computer science and machine learning, so he 
used his knowledge to clean the data into a usable format and develop the machine learning models and their pipelines. D.L. has a background in Earth 
science data, so she was able to obtain and clean the mosquito data as well as climate data. A.M. has a background in scientific writing and was able to 
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this study would not have been possible as no one person had the background to complete this entire project. Furthermore, working as a team allowed us 
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I Make an Impact: All of us (the authors) come from humid climates near urban areas. This means that mosquito-borne diseases are a local issue in all 
four of our communities. There is a need for prediction of mosquito abundance to enact preventative measures to inhibit the spread of disease. However, 
not all communities have the resources nor the infrastructure to enact enhanced methods of mosquito prevention without prediction. Our results utilize 
readily available remote sensing climate data to predict mosquito abundance. This can act as a cost-effective way to predict mosquito abundance and 
precent disease spread for communities who cannot afford them. Though our results focused on Chicago, our study could be applied to our local 
communities once mosquito data is available. We plan to share our research with communities who can utilize them and take effective preventative 
measures to stop the spread of mosquito-borne diseases. 
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