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Wildfires have the capacity to destroy forests, homes, and the health of ecosystems. As a
result of rising global temperatures, wildfires have experienced increased frequency and
severity, leading to devastating outcomes throughout sections of North America. All of
these factors have led to an increase in demand for tools that can accurately and
efficiently identify potential risk areas, particularly after the devastating California
wildfires of the 2010s and 2020s. This project aims to analyze pictures taken by NASA's
GLOBE Observer app to identify land cover types in order to classify their potential
contribution to wildfire risk in any given region. Additionally, past wildfires in California
from 2000-2018 were also considered as another factor for future wildfire risk. A python
model was then created using the FEMA Wildfire Risk Database and the GLOBE
Observer database. The two features of land cover type and historical wildfires are paired
with the FEMA wildfire risk database to determine the wildfire risk. The random forest
algorithm helped ensure that each decision tree in the algorithm contributes to the final
prediction, with the most frequent risk level chosen as the output. This approach ensures
robustness and accuracy by combining the insights from multiple trees. The model uses
these features to make predictions about wildfire risk, assigning a high, moderate, or low
risk level based on the patterns it learned during training. In the end, the results showed
that forests were least susceptible to wildfire spread while Urban areas presented a
significant threat to wildfire risk. Scientists can use this algorithm, which provides
real-time, ad-hoc data to analyze the risk of wildfires at times when satellites may not
accurately capture land cover imagery.
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Research Questions

This work aims to answer the
following research question: What key
structural components of land cover most
significantly influence fire danger, and
how can they be efficiently identified
using the GLOBE Observer App and
historical fires? The GLOBE Observer App
includes pictures taken directly from eye
level and, as such, can provide valuable
insight that satellites cannot capture, while
historical data provides concise data to help
narrow our research’s temporal and
geographic scope.

As global temperatures continue to
rise due to climate change, the conditions
conducive to wildfires—such as higher
temperatures, prolonged droughts, and dry
vegetation—are becoming more prevalent.
This combination of data will help with
understanding the structural components of
land cover that influence fire danger, as they
are essential for predicting and mitigating
these increasingly common and destructive
events.

1. Introduction

Once considered seasonal anomalies,
wildfires in the United States are now raging
year-round, devastating landscapes and
communities as climate change and human
activity intensify their frequency and
ferocity (Burke et al., 2021). An analysis by
the National Park Service has shown that
throughout the nation, with California in
particular, more than 80% of wildfires are
started by people. Campfires burning for

longer than recommended are heading this
trend; when campers fail to fully extinguish
a fire, leaving smoldering embers behind,
those embers can quickly reignite and spread
to surrounding vegetation.

Factors such as wind can carry
sparks from these embers to dry grass or
leaves, quickly igniting a larger fire. In
drought conditions or during the dry season,
even the slightest spark can lead to a major
blaze. Even controlled burns can quickly
spiral out of control if not conducted
properly. Farmers and landowners often use
fire to clear fields, dispose of agricultural
waste, or manage underbrush. However,
these fires can easily spread beyond their
intended boundaries, especially under windy
conditions (Balch et al., 2017).

Without human intervention, there
are a few conditions that can result in a
wildfire. Fuel, oxygen, and a heat source,
paired with dry weather, drought, strong
winds, or even lightning, can change a
singular spark to a raging fire that consumes
thousands of acres of land in its vicinity. The
fire itself is the result of a combustion
reaction, wherein some type of fuel is heated
to the lowest temperature, and it needs to
ignite and mix with the oxygen found in the
air (McLauchlan et al., 2020).

The fuel needed consists of any type
of flammable material, including shrubs,
trees, grass, and even man-made structures.
When exposed to heat, these materials
undergo a process called pyrolysis, where
the complex molecules within the material
break down into smaller, volatile
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compounds. This decomposition releases
vapors, and when ignited, the heat generated
by the combustion process continues to
break down more of the material, releasing
more vapors and sustaining the fire. This
continuous cycle keeps the fire burning as
long as there is enough fuel and oxygen.

Along with its potential to decimate
everything around it, a wildfire’s
characterizing trait is its ability to spread
incredibly fast. However, the intensity and
movement of a wildfire depend on the
weather, fuel, and topography of the area
(Moore, 2021). A fuel's characteristics,
including its moisture content, chemical
properties, and density, play a crucial role in
determining how rapidly a fire spreads and
at what temperature it burns. Therefore,
when vegetation is dry with low moisture
content, it ignites and burns more swiftly
because there is less water for the fire to
evaporate, which allows the heat to combust
the material directly, leading to more intense
wildfires.

A fire will only ignite when the fuel's
moisture level decreases significantly as the
heat can then evaporate the remaining water,
leading to the fuel becoming susceptible to
burning. This shows the importance of
considering moisture content in different
types of vegetation, as they can help predict
fire behavior more accurately.

The size and type of fuel impact
wildfire behavior significantly. Smaller
fuels, like grasses, ignite quickly but burn
with less heat compared to larger fuels, such
as trees, which sustain longer and hotter

fires. Lush vegetation accelerates wildfire
spread, while plants with high oil content,
like eucalyptus and pine, are more
flammable. Weather conditions, including
wind, temperature, and humidity, also play
critical roles; wind fuels the fire's spread,
high temperatures and low humidity dry out
fuels, and afternoon conditions are
particularly conducive to rapid fire growth
(Castro Rego et al., 2021). Additionally,
topographical features, such as slope,
elevation, and aspect, influence fire
dynamics. Fires on steep slopes climb
quickly due to rising heat, and south-facing
slopes or lower elevations, which receive
more sunlight, tend to have drier, more
flammable fuels. Understanding these
factors is essential for predicting fire
behavior and developing key management
strategies.

Recent research done by students at
USC has found a new model that can
accurately predict the spread of a wildfire
using artificial intelligence USC scientists
claim that this model can use satellite
imagery to track a wildfire’s progression in
real-time and then feed this data into another
algorithm that predicts the wildfire's
intensity, growth rate, and the predicted path
it will take.

They utilized historical wildfire data
from satellite imagery and were able to
“track how each fire was started, spread, and
eventually contained by studying the
behavior of past wildfires. Their analysis
revealed patterns influenced by different
factors like weather, fuel (for example, trees,
brush, etc.) and terrain,” (Shaddy et al.,
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2024). The model then was taught to
recognize patterns in the satellite images that
helped it predict how wildfires spread in
nature. The purpose of this study was to
create a fully functioning model that
anticipates how future fires might spread by
observing how previous fires reacted.

Understanding the various ways
wildfires start and spread is needed to
identify the key factors that must be
considered when collecting data to create
predictive models that can estimate the
likelihood of a wildfire occurring in a
specific area. To enhance this understanding,
the GLOBE Observer Database was used as
a remote sensing mechanism.

The app is an online tool available to
the general public that allows citizens and
scientists of all ages to make observations
about their environment through pictures
taken through their devices, all of which
contribute to the open GLOBE database
(Figure 1) which tracks how the
environmental has changed in an area to
enhance any gaps in satellite data and offer
more accurate scientific information that can
be used in research ("Global Learning,"
2023).

FIG 1: GLOBE Observers Land Cover Map

Citizen science significantly aids in
this process by providing real-time data
from diverse conditions, such as rain, snow,
or drought, which enhances land maps and
predictive models. By capturing images and
reporting observations, citizen scientists fill
gaps in satellite data, making environmental
information more current and accessible.
This collective effort not only improves our
understanding of land cover and wildfire
dynamics but also supports more timely
responses to environmental challenges.

However, while research is able to
focus on how existing fires are able to gain
more ammunition to spread after already
being started, little research has been done to
predict where the fires can start in the first
place. In this paper, we present a random
forest analysis of classification and
algorithms that find the correlation between
land cover type and the corresponding risk
of wildfire in California. This approach
aims to fill a critical gap in predictive
wildfire management, providing valuable
insights that can lead to more essential
prevention strategies. Understanding these
correlations not only aids in early detection
and response but also supports long-term
planning and resource allocation to mitigate
wildfire risks.
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FIG 2: FEMA Wildfire Map

2. Methodology

California was the area of interest,
not only due to its large land mass but also
due to the variety of ranges of wildfire risk
in the state, as denoted by the FEMA
Wildfire Risk Map (Figure 2), which details
the risk of wildfire in a certain location.
California had locations ranging from very
low to very high risk of wildfire, which
provided us with enough variability to
conduct our research.

Another distinct factor of California
is its Mediterranean climate, with dry and
warm summers and mild winters. The
climate throughout the state can vary
significantly due to the presence of the
Sierra Nevada Mountains and Pacific Ocean
coastline. Average temperatures remain
within 70 degrees Fahrenheit but can go up
to 80 degrees (Brown P.T, et al). Much of
inland California is arid and filled with
brush, desert, and dusty areas, as it is
encompassed by the Mojave desert. This is a
strong contrast to the fertile, green Central
Valley, where much of the land is covered in
greenery, both cultivated and wild.

To obtain the dataset needed for our
research, we consulted the GLOBE
Observer Database, which contains
thousands of data points collected
nationwide. This database is downloadable
as a CSV file, but we specifically required
data points located in California. To achieve
this, we had to implement a filtering process
to isolate the relevant data. Given the vast
number of entries, manual filtering was
impractical, so we turned to Python for an
automated solution.

We developed a Python script that
accessed the CSV file and filtered out any
data points outside a defined range of
latitude and longitude values specific to
California. This involved setting precise
margins for acceptable coordinates to ensure
accuracy. The script then removed any data
points falling outside these boundaries,
reducing the margin of error and ensuring
relevance. Finally, the script generated a
new CSV file containing only the GLOBE
Observer coordinates within California. This
refined dataset ensured that our research
focused exclusively on relevant
geographical data.

We also meticulously scanned the
dataset to ensure that no data from other
countries made its way into our dataset.
Additionally, we ignored any points that did
not provide complete information on the
land cover in the area, such as those lacking
images for the north, south, east, and west
directions. This was crucial as we needed to
ensure the availability of detailed land cover
information to accurately identify the type of
land cover.



Predicting Wildfire Risk Based On Land Cover Classification and Past Wildfire Data in California

6

Any entries with missing or
incomplete data were discarded to maintain
the integrity of our dataset. Finally, the
script generated a new CSV file containing
only the GLOBE Observer coordinates
within California. This refined dataset was
crucial for ensuring that our research
focused exclusively on relevant
geographical data, providing a solid
foundation for our analysis and model
training.

2.1 Remote Sensing Data:

The remote sensing data used in this
project included measurements of the
Wildfire Risk Index, land cover type, as well
as size and shape of historical wildfires. The
Wildfire Risk Index was obtained from the
Federal Emergency Management Agency’s
National Risk Index, which aimed to
provide a view of natural hazard risk across
the United States, addressing the diverse
likelihood and consequences of natural
hazards and the social factors influencing
community risk. Initiated under FEMA’s
Natural Hazards Risk Assessment Program
(NHRAP), the Index combines hazard
likelihood, impact, and community
vulnerability to deliver a holistic assessment.
This tool leverages available data to develop
baseline risk measurements for each county
and Census tract, with an interactive map
and data interface allowing users to
investigate community risks.

The size and shape of a wildfire that
occurred between the years of 2000 and

2018 were contributed by the National
Interagency Fire Center, which fed its
database into the ArcGIS software with a list
of points where previous fires occurred as
well as details on the location, size, and
shape of the wildfire, the year in which it
happened, the date and time when the fire
perimeter was last mapped or updated, and
the unit responsible for the point of origin.

2.2 Data Preparation:

To utilize the majority of our data,
we downloaded each dataset in the form of
Excel CSV files, which were subsequently
fed into our data model. In the end, three
datasets were created and then combined
into a master file. This master file was then
filtered into several different categories, all
the while maintaining data quality and
ensuring that no useful data points were
disregarded.

The dataset that included points from
the GLOBE Observer platform provided us
with the latitude, longitude, elevation, and
source codes for the images linked to each
observation a user had taken at that site.
However, as this set had more than 10,000
points from all over the world, we needed to
ensure that we were considering just the
California region. To do so, we imported the
file into Jupyter Notebook, where we
dropped all of the columns that were not
being used, such as the elevation values,
identification numbers, as well as the date
when the observation was taken (as the data
set included only values taken in the past
couple months). In the end, the only
columns that were left were in the format of



Predicting Wildfire Risk Based On Land Cover Classification and Past Wildfire Data in California

7
latitude, longitude, country name (just to
ensure that each point lies in the United
States), as well as four columns labeled

landcoversNorthPhotoUrl
landcoversSouthPhotoUrl
landcoversEastPhotoUrl
landcoversWestPhotoUrl

which contain the source code for each
picture taken at the point. After the new
CSV file was created, we conducted a
statistical analysis of land cover.

2.3 Statistical Analysis:

The filtered CSV file had over 1200
points located in the California region, and
in order for us to come up with a correlation
between the type of land cover and the
wildfire risk in the area, we needed to first
identify the majority wildfire risk for a
certain set of these points. Using the FEMA
Wildfire risk map, we were able to plug in
each set of coordinates into the software and
receive the wildfire risk index for each
point. In the end, about 325 coordinates
were labeled to have a very low risk for
wildfire, 350 had a relatively moderate risk,
and 578 had a very high risk for wildfire.

These were considered to be our
“strata” or categories that we initially
clustered the dataset into and were the main
component of our stratified random
sampling method. Stratified random
sampling is a type of statistical sampling
technique in which researchers are able to
obtain a sample population that best
represents the entire population being

studied. After the entire population is
divided into homogenous groups, random
samples are then selected from each stratum
in either proportion or disproportion to the
population.

This method differs from simple
random sampling, which involves the
random selection of data from an entire
population so each possible sample is
equally likely to occur. The primary benefit
of stratified random sampling is its ability to
capture key population characteristics within
the sample, similar to a weighted average.
This method ensures the sample's attributes
are proportional to the overall population,
making it better for diverse populations with
distinct subgroups. Stratified sampling
offers greater precision and smaller
estimation errors compared to simple
random sampling, with increased precision
as differences among strata grow.

In our case, the population we used
was the entire dataset of 1253 points of
observations located in California. These
points were then divided into three strata
(very high, very low, and relatively
moderate categories), with each stratum
being homogeneous as the points it
contained all had the same type of wildfire
risk. After this, we used a disproportionate
stratified method, in which instead of
choosing the number of samples based on
the population in each category, we simply
chose 33 random points from each stratum.
Often, disproportionate stratification is used
to give larger than proportionate sample
sizes in one or more subgroups so that
separate analyses by sub-groups are
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possible. As we want to analyze each group
for the type of land cover found in each
category, we chose to use disproportionate
stratification over proportionate
stratification.

After we inputted the row number of
the values in each stratum into a random
number generator, we were able to generate
33 random numbers that would be used for
further analysis. This is where we began our
land cover analysis (Figure 3 below). Each
row contained the source code for each
image, so we had to manually visit each of
the images to identify the land cover found
at that location. The type of land cover was
split into 5 categories: urban, forest,
wetland, grassland, and shrubland.

Figure 3: Spreadsheet illustrating strata
organization: red indicates very high

wildfire risk, orange represents moderate
risk, and yellow denotes very low risk.

Points from each section were analyzed for
land cover type.

2.4 Random Forest Regressor:

Random Forest Regression is an
ensemble learning method that constructs a
multitude of decision trees during training
and outputs the average prediction of the
individual trees to make predictions. Each

decision tree in the ensemble is built from a
random subset of the training data,
employing a technique known as
bootstrapping, and at each split, a random
subset of features is considered. Combined
with averaging, this randomization helps
reduce overfitting and variance, making the
model more generalizable to unseen data.
The method leverages the power of multiple
trees to enhance predictive accuracy and
control over-fitting, ensuring that the model
captures the essential patterns in the data
without being overly sensitive to noise.

The core principle behind Random
Forest Regression lies in its ability to create
an aggregated model that benefits from the
strengths of multiple weak learners, in this
case, decision trees. Each tree in a random
forest operates as an independent estimator,
and its predictions are aggregated to form
the final prediction. This aggregation can be
achieved by averaging the predictions (in
regression tasks) or by majority voting (in
classification tasks). The randomness
introduced by bootstrapping and feature
selection ensures that the trees are
de-correlated, providing a diverse set of
predictions that, when averaged, result in a
more accurate and stable prediction. This
ensemble approach inherently deals with the
limitations of individual decision trees, such
as high variance and overfitting, making
Random Forest Regression a powerful and
versatile tool for predictive modeling.
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FIG 4: The machine learning model our
team created looks at GLOBE Observer
pictures as well as satellite imagery to
determine relative probabilities of a fire at
that position

The Random Forest Classifier in our
ML model (Figure 4) was used to predict
wildfire risk by analyzing land cover and
historical fire data. Initially, categorical data
was encoded into numerical values to
facilitate the model's processing. The data
was then divided into features (input
variables) and the target variable (wildfire
risk). This separation allowed us to train the
model on 80% of the data while reserving
20% for testing its performance.

The Random Forest algorithm,
consisting of multiple decision trees, was
trained to classify wildfire risk based on the
input features. During training, the model
built numerous decision trees, each making
predictions that were aggregated to improve
accuracy. After training, feature importance
was assessed to determine which variables
were most influential in predicting wildfire
risk. The trained model was then used to
make predictions on new data, offering

valuable insights into areas at risk of
wildfire.

2.5 Evaluation Metrics:

One of the key performance metrics
for Random Forest regression is the Mean
Squared Error (MSE), which measures the
average squared difference between the
predicted and actual values. It quantifies the
variance of the residuals and helps in
assessing the accuracy of the model. Lower
MSE values indicate better model
performance.

𝑀𝑆𝐸 =  
∑[(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2]

𝑛

= 𝑖=1

𝑛

∑ [𝑦,
𝑖
−𝑦

𝑖
]2

𝑛

The Root Mean Squared Error
(RMSE) is the square root of MSE,
providing a measure of the average
magnitude of the prediction errors in the
same units as the target variable. These
metrics are crucial for evaluating the
effectiveness of the Random Forest
regressor, and are an interpretable measure
of model error since it is in the same units as
the original data, making it easier to
understand the magnitude of the error. By
minimizing MSE and RMSE, the model
ensures that the predictions are as close as
possible to the actual values, enhancing its
reliability and precision in real-world
applications.
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𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸 =  
∑[(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑛

= 𝑖=1

𝑛

∑ [𝑦,
𝑖
−𝑦

𝑖
]2

𝑛

R-squared (r2) is a statistical measure
that indicates the proportion of the variance
in the dependent variable that is predictable
from the independent variables.

𝑅2 =  𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙
𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

=1 − 𝑖=1

𝑛

∑ [𝑦,
𝑖
−𝑦

𝑖
]2

𝑖=1

𝑛

∑ [𝑦,
𝑖
−𝑦 ]2

It is calculated as shown above,
where the is the mean of the actual values.𝑦
R² values range from 0 to 1, with an R² of 1
indicating that the model perfectly predicts
the dependent variable, while an R² of 0
means that the model does not predict the
dependent variable at all. R² is a key
indicator of the model's explanatory power,
showing how well the independent variables
explain the variability of the dependent
variable.

Mean Absolute Error (MAE)
measures the average of the absolute errors
between predicted and actual values,
providing a straightforward measure of error
magnitude. It is defined as

=𝑀𝐴𝐸  𝑖=1

𝑛

∑ |𝑦,
𝑖
−𝑦

𝑖
|2

𝑛

Unlike MSE and RMSE, MAE does
not square the errors, making it less sensitive
to outliers. This makes MAE a good
measure for understanding the average
magnitude of prediction errors in a dataset
without the disproportionately large impact
of significant deviations.

In the context of a Random Forest
classifier, the accuracy_score function from
the sklearn.metrics module is commonly
used to calculate accuracy. The Random
Forest model is trained using the training
data. During this process, multiple decision
trees are built based on different subsets of
the training data.

When making predictions, each
decision tree in the forest predicts the class
label for a given sample. The final
prediction of the Random Forest is
determined by majority voting: the class
label that receives the most votes from all
the trees is chosen as the final prediction.
After making predictions on the test set, we
compare these predicted labels to the actual
labels (ground truth).

The accuracy_score function takes
two arguments: the actual labels (y_test) and
the predicted labels (y_pred). It counts the
number of correct predictions by comparing
these two arrays element-wise.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

The function then calculates the ratio of
correct predictions to the total number of
predictions, as described in the formula
above.
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Results:

The following section presents the results
obtained from applying the Random Forest
classifier to our dataset. This analysis
includes an evaluation of the model’s
performance through various metrics,
providing insights into its predictive
accuracy and feature importance. By
examining these results, we aim to
understand the efficacy of the Random
Forest model in capturing the underlying
patterns within the data and its ability to
generalize to new, unseen samples.
Additionally, we will explore the
contribution of different features to the
model’s predictions, shedding light on the
key drivers influencing the classification
outcomes.

Algorithm Results

Model MSE RMSE R2 MAE

RF Regressor 0.40 0.630 0.290 0.300

Accuracy

RF Classifier 0.75

TABLE 1. Results from random forest
regression and classification.

The results from the random forest models in
our project indicate substantial predictive
capabilities. Table 1 above shows that the RF
Regressor achieved a Mean Squared Error
(MSE) of 0.40, a Root Mean Squared Error
(RMSE) of 0.630, an R-squared (R²) value of
0.290, and a Mean Absolute Error (MAE) of
0.300. These values reflect the model's ability to
estimate fire risk with reasonable precision,
though there is room for improvement. The RF
Classifier, with an accuracy of 0.75,
demonstrates a strong capability in correctly

predicting fire risk categories based on land
cover types. These metrics collectively suggest
that our approach of using land cover
classification significantly enhances the model's
performance in fire risk prediction, providing a
strong tool for future fire mitigation efforts.

3.1 Confidence Interval

To create a confidence interval for our Random
Forest Classifier's accuracy, we will use the
formula for the confidence interval of a
proportion. First we need to ensure that all of the
conditions for a confidence interval are satisfied:

1. The data used is from a random sample
and is therefore representative of the
population

2. Each observation in the sample data is
independent of every other observation.

3. The size of the sample is greater than 30
(33 > 30)

4. The sample size should be less than or
equal to 10% of the population size. (33
< 125.3

5. The sample size should be large enough
so that both np and n(1-p) > 10

The Sample Proportion (Accuracy):

𝑝 = 0. 75
Z value for 95% confidence = 1.96

Sample size= 33

SE (Standard Error) =

𝑝(1−𝑝)
𝑛 = 0.75(1−0.75)

33 = 0. 0754

ME (Margin of error) =
𝑍 ×  𝑆𝐸 =  1. 96 ×  0. 0754 = 0. 1478

Confidence interval:

𝑝 ± 𝑀𝐸 = 0. 75 ± 0. 1478
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So, the 95% confidence interval for the accuracy
is:

(0.6022,0.8978)

The 95% confidence interval for our model's
accuracy, ranging from 60.22% to 89.78%,
indicates a broader range due to the smaller
sample size of 33. While this interval is wider, it
still provides useful information about the
model's performance. The accuracy is likely to
fall within this range 95% of the time,
highlighting the need for more data to narrow
the interval and improve precision. This shows
the importance of citizen science in collecting
additional data points to enhance the reliability
of our wildfire risk predictions.

FIG 5: Bar graph that denotes the wildfire
risk index per the type of land cover

classification

Our model had a 75% accuracy rate,
and through our analysis, we established a
clear and direct relationship between
different types of land cover and their
associated wildfire risk. By leveraging the
Random Forest classifier, we were able to
discern the varying degrees of wildfire risk
across distinct land cover types, confirming
several established scientific observations.
Specifically, our findings (shown by figure 5
above) indicate that forests generally exhibit
low to relatively low wildfire risk,

shrublands and grasslands demonstrate
relatively high to very high wildfire risk,
urban areas show varying levels of risk from
moderately high to very high depending on
location and population density, and
wetlands present moderately high to
relatively high wildfire risk.

The results suggest that forests
generally exhibit a lower wildfire risk
compared to other land cover types. This
finding aligns with existing research
indicating that the dense canopy and
moisture retention in forest ecosystems
contribute to their relative resistance to
wildfire. However, this does not imply that
forests are immune to wildfires; factors such
as prolonged drought, accumulation of
combustible material, and human activity
can still elevate the risk.

Our analysis confirmed that
shrublands and grasslands have a relatively
high to very high wildfire risk. These areas
are characterized by lighter, more flammable
vegetation that can ignite and spread
quickly. This observation is supported by
studies showing that the fine, dry fuels
present in these ecosystems are highly
susceptible to ignition, especially during dry,
windy conditions. Additionally, the open
structure of these landscapes facilitates the
rapid spread of fire (Radeloff, 2023).

The wildfire risk in urban areas
varies significantly, showing moderately
high to very high levels depending on
factors such as location and population
density. Urban areas located near
wildland-urban interfaces (WUIs) are
particularly at risk due to the proximity to
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flammable vegetation and potential ignition
sources from human activities. High
population density can also increase the risk,
as more potential ignition sources and
vulnerabilities exist. Urban planning and fire
mitigation play crucial roles in managing
this risk.

Despite being less commonly
associated with wildfires, wetlands also
present a moderately high to relatively high
wildfire risk. This might seem
counterintuitive given their typically moist
conditions, but during periods of drought,
wetland areas can dry out and become
susceptible to fire. Additionally, the
organic-rich soils and dense vegetation in
wetlands can provide ample fuel for
wildfires once they ignite.

Discussion:

While the Random Forest classifier
provided valuable insights, we faced several
challenges with the data and methodology.
One significant issue was data quality and
completeness. Variations in data collection
methods, missing values, and
inconsistencies across different datasets
required extensive preprocessing to ensure
the integrity of our analysis. Moreover, the
resolution of land cover data varied,
potentially affecting the accuracy of our
predictions for specific areas.

For some locations, classifying a
land cover proved to be difficult due to the
clarity of the images, which added another
layer of complexity to our work. Every
individual may interpret a picture of land
cover differently; where one person sees

60% grassland, another might only see 40%.
These variations in judgment can
significantly impact conclusions about
wildfire risk, potentially leading to the
assignment of more risk to one land cover
type over another, even when such
differences may not be statistically
significant.

The Random Forest mechanism itself
also posed some challenges. Although it is
capable of handling large datasets with
multiple features, it can be computationally
intensive and may require fine-tuning to
optimize performance. Overfitting was a
concern, particularly given the diverse
nature of our land cover types and the
varying scales of data. To mitigate this, we
implemented techniques such as
cross-validation and parameter tuning to
enhance the model's generalizability and
accuracy.

Park Williams, an associate research
professor and a 2016 Center for Climate and
Life Fellow, is conducting a comprehensive
study on climatology, drought, and wildfires
in the Western United States. His research
involves compiling data on tens of
thousands of fires that occurred over the last
30 to 40 years and cross-referencing this
information with data sets on human
population distribution and vegetation
patterns.

The goal is to develop a computer
program that can project how these variables
influence the probability of large fires and
simulate vegetation responses to fire (A.
Park Williams et al. 2020). This tool aims to
provide seasonal forecasts of wildfire
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probabilities, which could be extremely
useful for landowners in planning
preventative measures such as prescribed
burns or forest thinning. Additionally, it
could enhance public awareness of wildfire
risks and encourage proactive measures for
yard maintenance and evacuation planning.

After reviewing Park Williams'
research, several improvements could be
made to enhance our own study on the
correlation between land cover types and
wildfire risk. Firstly, cross-referencing
wildfire data with detailed vegetation and
population distribution data could help
refine the understanding of how these
factors influence wildfire risk in different
land cover types. Secondly, integrating
advanced modeling techniques like those
used in Williams' research, such as computer
simulations that simulate vegetation
responses, could significantly enhance the
predictive capabilities of our study.
Developing a tool that offers seasonal
forecasts and assesses how different
variables affect wildfire probabilities could
provide valuable insights for policymakers.

Lastly, addressing the issue of data
quality and resolution is crucial. Williams'
research shows the importance of
high-quality, consistent data sets. Improving
the resolution of land cover data and
ensuring consistency in data collection
methods could mitigate the challenges of
subjective interpretation and enhance the
accuracy of wildfire risk assessments. By
adopting this, our research could yield more
reliable and actionable insights into wildfire

risks associated with various land cover
types.

Conclusion

Based on our model, we confirmed a
correlation between land cover type and fire
risk, with both methods showing similar
accuracy. Using land cover classification
significantly improved our model's accuracy,
which was 75 %, enhancing future fire
prediction. A 75% accuracy rate means that
the model is reliably identifying and
predicting fire risk in a significant majority
of cases. Interestingly, historic fires in the
area did not significantly impact the
predictions, suggesting that other factors
play a more crucial role in determining fire
risk.

However, there is a lack of data
points in specific areas of California,
highlighting the importance of citizen
science. Engaging the public in data
collection can fill these gaps, improving the
model's precision and aiding in better
wildfire response strategies. Citizen science
has the potential to play a huge role in
preventing the loss of life, nature, and
properties, provided that data is filtered
according to a standard protocol (Dodson,
2022). To further bolster our model’s
capabilities, we could integrate a
Convolutional Neural Network (CNN) into
our algorithm. CNNs are known for their
ability to perform efficient data extraction
with minimal human intervention, which
could accelerate the analysis process while
maintaining high accuracy. Implementing a
CNN could significantly enhance our
model’s performance, providing more rapid
and reliable predictions that are essential for
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timely wildfire response and prevention
efforts.

The future applications of this
research extend far beyond immediate
wildfire risk assessment, offering a
foundation for several impactful
advancements. By refining predictive
models based on land cover types, we can
develop more sophisticated early warning
systems that provide localized and timely
alerts for potential wildfire outbreaks. This
capability will allow for proactive measures,
such as community evacuation and
emergency response plans, to be
implemented more practically. Additionally,
the integration of citizen science into our
data collection process opens avenues for
real-time monitoring and updating of land
cover information, further enhancing the
model's accuracy. In the long term, this
research could be instrumental in shaping
policies for sustainable fire prevention.

Data and Code

Data and code to replicate the results
of this experiment are available at the
following public Github repo:

https://github.com/CoderManChild/NASA_
SEES

GLOBE Observer data were
obtained from NASA and the GLOBE
Program and are freely available for use in
research, publications, and commercial
applications. GLOBE Observer data
analyzed in this project are publicly
available at globe.gov/globe-data (accessed

on 5 July 2023). The Python code to read,
analyze, and visualize GLOBE data for this
article as well as the analyzed datasets are
available on github.com/IGES-Geospatial.
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International Virtual Science
Symposium Badges

Data Science: This badge is being applied
due to the large amount of data collected
from the GLOBE Observer App from
California. We used multiple data filtration
techniques to process our data. Additionally,
we integrated historic wildfire data from the
National Interagency Fire Center (nifc) with
our GLOBE Observer Data to our data
points. This data was used with our Random
Forest Algorithm to predict wildfire risk
from our processed data.

Engineer: This badge is being applied for
because we evaluated our research question
through machine learning and
hyperparameter tuning to improve the
performance of our models. Our research
addresses the real-world problem of wildfire
risk and allows other researchers to
understand the effects of the environment on
how it may influence future wildfires.

Collaborator: This badge is being applied
as a result of our team’s collaboration skills.
Atharva Kulkarni - from Chantilly High
School - was the data scientist and created
the ML Model. Akshada Guruvayur - from
Edison Academy Magnet School - was the
data gatherer/interpreter as well as the
statistical analyst. Ananya
Chakravarthi.from Plano East Senior High
School, was our information organizer as
well as CristinaMarculescu fromWestlake
High School. These roles helped clearly
define everyone’s part of the project based
on our skills so that we could have a
completed project on time.


