Land cover measurements and biodiversity in Vabaduse boulevard, Tartu Estonia

Tilen Burja, Vid Felicijan, Luka Komatar, Laura Javoršek -Slovenia Erik Lindgren, Kätrin Kaunimäe, Marit Lõbu, Anti Tohva, Roomet Tapfer, Marianna Lili Aly, Milena Saan - Estonia Ternova Kateryna Oleksiy Ternovoy - Ukraine

Supervisor: Marie Johanna Univer

Research questions and hypotheses

Q1: What kind of species can be found in the Vabaduse city park?

Q2: What is the ratio of native species to non-native ones?

H1: There are more native species than non-native species in the research area.

H2: The study area is classified as a forest according to the MUC code.

Research questions and hypotheses

Q1: What kind of species can be found in the Vabaduse city park?

Q2: What is the ratio of native species to non-native ones?

H1: There are more native species than non-native species in the research area.

H2: The study area is classified as a forest according to the MUC code.

Research methods and equipment

Land cover: Clinometer, densiometer, rope, flags, measuring tape, GLOBE data entry app, interactive identifier keys.

Methods: GLOBE land cover protocols (vegetation, canopy-cover, etc.)

Research methods and equipment

Land cover: Clinometer, densiometer, rope, flags, measuring tape, GLOBE data entry app, interactive identifier keys.

Methods: GLOBE land cover protocols (vegetation, canopy-cover, etc.)

Figure 1: Measuring tree's circumference.

Photo: Marie Johanna Univer

Methodology

 30x30 meter square, which was picked to include a variety of plant species.
 Determining MUC code using the field guide

protocols

Figure 2: Research area marked by the red square. Map source: Estonian Land Board. Edited by Erik Julius Lindgren.

Methodology

- Calculating canopy coverage using a densiometer on the 42,4 meter long diagonal transects.
 - Estimating height of trees using inclinometer
- Measuring circumference of trees using measuring tape
 - Measuring and marking using measuring tape and marker flags

Figure 3. Using the measuring tape. (Source: Courtesy of the authors)

Methodology

- Calculating canopy coverage using a densiometer on the 42,4 meter long diagonal transects.
 - Estimating height of trees using inclinometer
- Measuring circumference of trees using measuring tape
 - Measuring and marking using measuring tape and marker flags

Figure 3. Using the measuring tape. (Source: Courtesy of the authors)

Site description

- City park
- Historic (before 1918)
- Preserving fallen trees, adding new species

NE: 58.383324, 26.72444

SE: 58.383056, 26.724428

SW: 58.383068, 26.723904

NW: 58.383336, 26.723927

Figure 4. Satellite picture of Vabaduse boulevard (Source: Estonian Land board)

Tree height measurement

	Average height (m)	Average circumference (cm)	# of trees
European lime (<i>Tilia × europaea</i>)	25,9	239	6
European horse chestnut (<i>Aesculus hippocastanum)</i>	21,3	207	2
Both species combined	24,8	231	8

Figure 5. European lime in the middle and European horse chestnut on the right (Source: Courtesy of the authors)

Biometry Height 1 (m) * 25.8 m Height 2 (m) * 24.4 m Height 3 (m) * 24.5 m Figure 6. Data Circumference (cm) * entry of our 208 cm measurements (Source: Latitude (°) * 58° *Courtesy of the* authors) Longitude (°) * 26° Elevation (m) * 34 m

Results

	Plar		
	Woody plants	Graminoid	Total plants
Number of species	13	21	34
Number of non-native species	5	2	7
Number of invasibe species	0	0	0

Mosses	Fungi	Lichen	Animals	Total species	Percentage	Percatage of total plants
1	3	1	8	47	100,00 %	100,00 %
0	0	0	1	8	17,02 %	18,92 %
0	0	0	0	0	0,00 %	0,00 %

Figure 7. Small Balsam. (Source: Courtesy of the authors)

Note: small balsam is an invasive species in Slovenia, but a common weed in moist places in Estonia

Photos of the Site's enviroment

Figure 9. Close-up of ground cover (Source: Courtesy of the authors)

Figure 10. View of the research area (Source: Courtesy of the authors)

Question arose: Why are almost all European horse chestnut leaves brown?

Figure 11. *Cameraria orhidella on the leaf of* European horse chestnut. (Photo: Laura Javoršek)

Figure 10. European horse chestnut. (Photo: Laura Javoršek)

Who causes brown spots on leaves? Answer: Cameraria orhidella (hobukastani keerukoi)

Conclusion and discussion

- About 47 species were found, of which 34 were plants,
 1 were mosses, 3 were fungi, 1 were lichen and 8 were animals.
- Out of 47 total plant, animal and some other species,
 8 (~17%) were non-native.

There are more native than non-native species, in accordance with our first hypothesis
 The study area can also be classified as a forest, so the second hypotheses is also true.

Conclusion and discussion

About 47 species were found, of which 34 were plants,
 1 were mosses, 3 were fungi, 1 were lichen and 8 were

- animals.
- Out of 47 total plant, animal and some other species,
 8 (~17%) were non-native.

There are more native than non-native species, in accordance with our first hypothesis
 The study area can also be classified as a forest, so the second hypotheses is also true.

Thank you!Дякую!Hvala!

