
Methodology
Random Forest Regressor

Random Forest Regressor is a powerful machine-learning algorithm used for 
regression tasks. It is an ensemble method that combines multiple decision tree 
models to make accurate predictions on continuous numeric data. The algorithm 
works by creating a multitude of decision trees during the training process and then 
aggregating their predictions to obtain a more robust and stable final output. 

After splitting our dataset into a training set and testing set, we trained a baseline 
Random Forest Regressor. To optimize our evaluation metrics, we used a random grid 
to search for the optimal hyperparameters after creating RandomForestRegressor() 
mode. This optimization method conducts a random search of parameters using 3-fold 
cross-validation and searches across 100 different combinations, and uses all available 
cores. The optimal parameters were the following:

Random Forest Classifier

Random Forest classifiers make use of a labeled dataset where each data point is 
associated with a target class label. Bootstrap Aggregating, or Bagging, is then utilized 
to create multiple random subsets within the dataset, some data points may be 
repeated, and others may be left out. For each subset of the data, a decision tree is 
built by recursively splitting the data based on features to make decisions and predict 
the target class. 

Random forest models include many hyperparameters such as 
param_distributions or n_iterations, that can be altered to produce a model with a 
higher accuracy. Utilizing a RandomizedSearchCV function allows us to train many 
models with different parameters for each model, and make use of the 
“best_estimator” and “best_params_” attributes to respectively print out the best 
accuracy achieved, along with the parameters used to achieve it. The parameters used 
were:
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Abstract
Mosquito vector-borne diseases, such as Dengue, West Nile Virus, Malaria, and 

Zika, pose significant global health risks for upwards of 3.9 billion people. An essential 
component to limiting the spread of mosquito vector-borne disease and assessing 
disease risk is the prediction of mosquito abundance. Given the severity of 
mosquito-borne diseases, there is a need for intelligent and automated mosquito 
abundance forecasting models. Such models would empower government and 
healthcare authorities to proactively address the mosquito threat and establish 
long-term disease prevention strategies. This study proposes the implementation of 
random forest models to predict mosquito larvae abundance in West Africa, suitable 
for forecasting future mosquito vector-borne disease outbreaks. Our models leverage 
remote sensing satellite data to extract features including normalized difference 
vegetation index (NDVI), average rainfall, temperature, humidity, and sporadically 
recorded GLOBE Mosquito Habitat Mapper (MHM) citizen science data to develop 
accurate predictions of mosquito population densities. We performed a comparative 
analysis of random forest classifiers and random forest regressors for the prediction of 
mosquito larvae counts as categories or numerical values, and determined both 
models to offer practical benefits for real-world implementation in mosquito habitat 
forecasting. The outcomes of our research indicate that random forest classifiers 
exhibit strong viability for predicting mosquito habitats and larvae abundance, 
achieving an accuracy of over 85%. Whether applied to a classification task or 
regression task, our work demonstrates the ability of random forest machine learning 
models to effectively identify correlations between environmental variables and 
mosquito population characteristics to predict mosquito abundance with high 
accuracy. In doing so, our research underscores the utility of remote sensing data and 
machine learning models for real-world mosquito threat management. Moreover, our 
results provide valuable insights for future research to address mosquito-borne 
disease prevention by targeting other areas or developing mosquito surveillance 
systems

Data Preparation
Preprocessing Data 

All observations with null and undefined (-9999) values were set to 0 for amount 
of larvae. The NDVI dataset had 59 observations each day every 10 days with no 
geocoding so we averaged the values of each day to create an accurate representation 
of the NDVI on that day. 
 

Combining 5 Datasets + Making Tier Levels

Once all the datasets were cleaned and normalized we merged them using the 
mosquito habitat mapper dataset as a base and attached the corresponding 
measurements from each remote sensing dataset by matching the closest in date and 
latitude and longitude. 

After merging all the datasets we then created another column for larvae abundance 
tiers: 

low (0): 0 - 9 larvae
medium (1): 9 - 22 larvae

high (2): 22+ larvae

Our quantity of larvae abundance for tiers was determined based on the distribution 
of our MHM data set.

Discussion
Considering the threat of vector-borne diseases, machine learning models like the 

ones we implemented in our research are vital to forecasting disease outbreaks and 
developing disease management strategies. Notably, our results demonstrate that 
whether applied to a classification or regression task, random forest models show 
promise for real-world mosquito abundance prediction, providing further evidence 
that this type of model is well-suited to identifying correlations between ecological 
variables and mosquito population characteristics. The high accuracy achieved by our 
models, despite lacking consistently recorded data,  demonstrates our random forest 
models’ ability to handle multi-dimensional data and effectively predict mosquito 
habitats.

Although our models achieved high accuracy, there are several limitations to be 
aware of when understanding our results. Firstly, since GLOBE Observer Mosquito 
Habitat Mapper data comes from citizen scientists, the data acquired did not come at 
regular or consistent time intervals, limiting the amount of representative data points 
we were able to align with environmental sources to ultimately include in our training 
dataset. Furthermore, data collection methods may not be accurate or consistent 
between volunteer observers, and it may be important to acknowledge certain features 
of observations. For example,  the types of tools available to volunteers, such as 
microscope lenses, may affect the accuracy of observations, and thus have the 
potential to be influencers in our models.
    Similar studies have modeled potential mosquito habitats by examining aerial 
satellite images and aquatic habitats or calculating habitat suitability to indicate 
where certain mosquito species are most likely to occur (Mushinzimana et al., 2006; 
Cleckner et. al, 2011). The integration of remote sensing environmental variables with 
mosquito trap data or land cover images highlights that our methods of leveraging 
remote sensing environmental data, land cover data, and mosquito habitat data likely 
reveal important information about mosquito abundance. While our models did not 
extend to examining specific mosquito species, with adequate data mapping mosquito 
species and their habitats, our models could be adapted to predict mosquito habitats 
and disease risks of specific species.

Results
The results are shown in Table 2 below. The random forest classifier performed 

generally better, which was expected as the classification task at hand involved simpler 
decision boundaries, and the regression tasks required the model to capture complex 
relationships between variables to predict continuous values accurately. 

                TABLE 2. Results from random forest regression and classification.

One potential issue faced during the training of the models was the 
overrepresentation of 0 larvae counts. This overrepresentation as well as the lack of 
constant data taken by MHM plays into the sources of error which we suspect is the 
primary cause of insufficient results by the regression model. While under-sampling 
only seemed to decrease the accuracy, the use of a random_state to ensure the 
reproducibility of the training and testing data split allowed us to split the data in 
such a way that the imbalance was solved to some extent.

The main difference between regression and classification is that regression 
predicts numerical larvae count values whereas classification predicts the category of 
larvae count. Because precise numbers may not be required when assessing disease 
risk, an understanding of the concentration of mosquitos, as provided by 
classification, leaves room for a range of larvae count values to be classified and 
considered accurate, making this method robust and suitable for real-world mosquito 
threat management. Regression could serve to illustrate trends in mosquito larvae 
counts over time, allowing for the forecasting of potential spikes or high-risk periods 
in mosquito populations.

IntroductionIntroduction
Mosquitos are the world’s deadliest animal, accounting for more than 700,000 

annual deaths (Helmer, 2023). Mosquito vector-borne diseases such as Dengue, West 
Nile Virus, Zika, Yellow Fever, and Malaria are serious public and animal health 
problems caused by parasites and bacteria transmitted by mosquitoes. Recent research 
suggests that global trends, modern transportation and globalization, urbanization, 
and climate change will likely exacerbate the risks of mosquito vector-borne disease, 
which has plagued living species for generations (Gubler, 2009; Rogers & Randolph, 
2006; Ryan et al., 2019). Mosquitos can thrive in a variety of water sites, including 
fresh water, polluted water, brackish water, and turbid water, where they lay eggs that 
hatch into larvae (S.N.R et al., 2011; Sutherst, 2004). For outbreaks to occur, local 
vector levels need to be sufficiently high. Therefore, the ability to predict potential 
mosquito breeding sites and estimate mosquito abundance is an essential component 
of assessing disease risk (Kinney et al., 2021; Lega et al., 2017; Ryan et al., 2006). 

Citizen science is an increasingly popular form of voluntary public participation in 
scientific research to expand scientific knowledge (Low et al., 2021). The GLOBE 
Observer app is a publicly-available application that allows citizen scientists to use 
their cameras to collect observations of their environment and contribute to the 
GLOBE database. Notably, the GLOBE Observer app offers a mosquito habitat mapper 
(MHM) tool for citizen scientists to photograph and classify mosquito larvae to add to 
the global database (GLOBE, 2022). 

Predicting mosquito breeding sites is complicated by global climate change and 
weather factors. Previous research regarding mosquito risk identification identified 
specific temperatures as significant contributors to mosquito abundance, with a strong 
positive relationship between monthly relative humidity and mosquito larvae (Drakou 
et al., 2020). The Mosquito Landscape Simulation (MoLS), developed by Lega et al. 
(2017), is a mechanistic stochastic model for estimating Aedes aegypti mosquito 
abundance based on relative humidity, precipitation, and temperature. Their research 
demonstrated a model to predict Aedes aegypti abundance in real time using historical 
climate data coupled with available weather forecasts (Lega et al., 2017). Motivated by 
the difficulty of scaling such a model up to a large number of locations, Kinney et al. 
presented a faster Artificial Neural Network (ANN)-based alternative to MoLS using 
three base-ANN models incorporating recurrent layers, trained on weather time series 
data. Their research suggests that the use of ANNs trained on weather and 
surveillance data can effectively “contribute to the development of probabilistic 
mosquito abundance forecasting models” (Kinney et al., 2021). 

While recent research has focused on the use of AI and modeling to develop 
models to predict mosquito abundance and breeding sites, little research has 
combined land cover satellite data, remote sensing environmental data,  and mosquito 
habitat citizen science data as a means to forecast mosquito abundance. In this paper, 
we present a random forest analysis of classification and regression algorithms that 
predict mosquito larvae abundance in Benin, Africa. 

Benin was selected as an area of interest due to the higher density of data 
available from this location. The significant amount of mosquito habitat observations 
from Benin demonstrates the impact of the mosquito population in this area and the 
need for effective methods for mosquito abundance forecasting. This work seeks to 
compare random forest regression and classification for mosquito habitat prediction 
using remote sensing data in Benin. 

Conclusion
Our random forest classifier optimized with random search achieved its highest 

accuracy of 85.12 %. Adopting mosquito larvae prediction models like demonstrated 
could greatly enhance mosquito vector-borne disease management, by enabling 
authorities to have advanced knowledge of mosquito risks and develop proactive 
strategies for preventing disease spread. Our models could be applied to data in other 
target locations to provide accurate and relevant forecasting models for mosquito 
larvae trend observation. 

Our results provide valuable insights for future research to develop surveillance 
systems or alert mechanisms to aid in mosquito-borne disease prevention efforts. In 
particular, future research could experience with other machine learning architectures 
or ensembling techniques to achieve better results. As a note, when we later tested an 
AdaBoost classification model, we achieved an improved accuracy of 92.144%. Based 
on our results, future work could also explore alternative approaches for classifying 
larvae count into tiers, leverage additional features such as location and date, or 
integrate more mosquito datasets from other sources such as iNaturalist, VectorSurv, 
or Mosquito Alert to acquire more consistent data for improved prediction accuracy.
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Larvae Count Distribution
Min Min non-zero Max Median Average

0 10 89 0 6.83297

Algorithm Results
Model MSE RMSE R2 MAE
RF Regressor        114.381  10.695 0.079 7.281

Accuracy
RF Classifier       0.8512

{max_depth = 80, max_features = ‘auto’, min_samples_leaf = 4, 
min_samples_split = 5, n_estimators = 200}

Data
Mosquito Larvae Dataset

Mosquito larvae abundance data was obtained through the GLOBE Mosquito 
Habitat Mapper program (shown in figure 2 above), an app based tool where citizen 
scientists worldwide can submit data on mosquito habitats. The observations used in 
this study spanned from June 14, 2018 to July 5, 2022 , in Benin.

Remote Sensing Data
The remote sensing data used in this project included measurements of the 10 day 

Normalized Difference Vegetation Index (NDVI), 10 day rainfall (RFH), relative 
humidity, and temperature. NDVI and RFH data was obtained from the Benin: NDVI at 
Subnational Level and Benin: Rainfall Indicators at Subnational Level datasets through 
the Humanitarian Data Exchange, a humanitarian open data sharing platform run by 
the United Nations Office for the Coordination of Humanitarian Affairs. The data was 
contributed by the World Food Programme, a humanitarian organization dedicated to  
fighting hunger worldwide. The relative humidity and temperature data was obtained 
from the HadISDH dataset, a global gridded monthly mean surface humidity dataset 
maintained by the Met Office Hadley Centre.

Graphs of vegetation, 
rainfall, humidity, 
and temperature over 
date from 
June 14th, 2018 to 
July 5, 2022 in Benin, 
Africa.

{'criterion': 'log_loss', 'max_depth': 118, 'min_samples_leaf': 337, 
'min_samples_split': 124, 'n_estimators': 238}


