
Table 1 details the performance of our four machine learning models. 
While overall MAE and overall RMSE are overall error metrics, 
minimum RMSE and maximum RMSE describe the smallest and 
largest error values between any two points in the test set, providing 
another perspective on model performance. When comparing RMSE 
as a proportion of the desired output range for each model, the RF 
regressor clearly displays stronger performance than the SVMs. 
However, when comparing MAE as a proportion of the desired output 
range for each model, the four models display rather similar 
performance, with the RBF SVM ultimately outperforming all other 
models. This trend persists in the minimum RMSE value, where all 
models perform closely but the RBF SVM still outperforms its 
counterparts. This variation is likely a result of the nature of MAE and 
RMSE. MAE is linear in nature; therefore, it penalizes all errors 
equally, while RMSE is nonlinear in nature and weights errors that are 
larger in absolute value more heavily (Chai   & Draxler, 2014). With 
this understanding of error, we can conclude that the RF regressor is 
indeed stronger than the SVMs as it is less likely to produce an error 
that is large in magnitude. Temperature emerges as the most 
important feature and precipitation as the least important, while EVI, 
AQI, wind speed, and humidity are all of similar importance (Table 2). 

Mosquitoes are vectors for a number of serious illnesses, such as 
Dengue, Zika, Malaria, and West Nile Virus. In the United States, 
West Nile Virus (WNV) is the leading mosquito-borne disease (CDC 
2022). As there are currently no vaccines to prevent WNV nor 
medications to cure it, government agencies must sustain financially 
taxing programs to monitor mosquito populations and WNV infections 
in an effort to prevent WNV outbreaks. In this study, we develop four 
machine learning models that forecast WNV infections in humans, 
enabling government and healthcare officials to take proactive action 
instead of reacting to real-time infection data. Our models take in data 
on ecological variables – such as humidity, wind, air quality, and 
vegetation — and use that data to predict future WNV infections five 
weeks in advance. We then present a comparative analysis of two 
types of machine learning models – support vector machine 
regressors and random forest regressors – to evaluate which is best 
suited for the task. Our results provide a streamlined solution for 
government agencies as they monitor WNV, enabling effective and 
low-cost preventative action.
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Area of Interest (AOI): Our AOI is  the Southern Californian area 
comprised of Los Angeles Riverside and Orange County. We chose 
these counties since they have significant GLOBE data (see Fig. 1), 
open source WNV infection data, and significant changes in 
environmental variables across each mosquito season (see Fig. 2).

 Our results indicate that random forest regressors are the best 
machine learning architecture for this task; however, support vector 
machine regressors perform comparably well and even exceed 
random forest regressors when the magnitude of error is unweighted. 
Our results are particularly strong given the challenge of predicting 
absolute values in a dataset that varies significantly week-to-week, 
due to delays between infection and reporting and the life cycle of 
Culex pipiens. 
The RF regressor's feature importances reveal noteworthy 
correlations between our ecological variables and WNV infections. 
Most notably, EVI, AQI, wind speed, and humidity rank almost equal 
in importance. This is significant as, as detailed in our literature 
review, there is a lack of consensus on the importance of AQI and 
wind speed in mosquito prediction tasks. Our work suggests that AQI 
and wind speed are almost as important as vegetation and humidity 
metrics when aiming to predict disease characteristics in the southern 
California area.  
Such findings and others described in our paper reveal new research 
directions and provide a solid foundation for the continued 
development of early warning systems for forecasting WNV 
infections. However, our work also has potential for growth. For 
example, our models would benefit from more frequent WNV testing, 
as a more dataset with more frequent time steps would likely reveal 
new patterns that are currently obscured behind the weekly reporting 
structure and thereby reveal new opportunities to improve our 
predictions. 

Prior work has informed our decision to use Random Forest and 
Support Vector Machine models for this task, as they have 
consistently proven successful for a variety of mosquito prediction 
and classification tasks (Genoud et al. 2020, Früh et al. 2018, 
Wieland et al. 2017). The methodology of Lorenz et al. (2020) and 
Franklinos et al. (2019) demonstrated learning processes which 
evaluate mosquito-borne disease, supporting our use of Enhanced 
Vegetation Index (EVI) data derived the practicality of using remote 
sensing data in machine from NASA’s Aqua and Terra satellites. 
Previous studies used weather variables such as temperature, 
precipitation, and humidity to predict mosquito abundance and 
transmission (Ligot et al. 2021, Buckner et al. 2011, Chuang et al. 
2011); therefore, we included these variables as well. While 
Thiruchelvam et al. (2018) found little effect of AQI on the spread of 
disease, Gui et al. (2021) observed that extremely poor air quality 
and high wind speed could reduce the risk of Dengue transmission. 
Given the lack of scientific consensus and the similar oscillation 
patterns we observed between AQI and known significant ecological 
variables, we decided to include AQI in our model to assess its 
significance. These cases of previous research led to our decision to 
include humidity, temperature, precipitation, air quality, wind speed, 
AQI, and EVI in our models. We also included GLOBE data in our 
preliminary analysis, as several studies discussed the advantages of 
citizen science data, pointing out that citizen science programs such 
as the GLOBE Observer app’s Mosquito Habitat Mapper and Land 
Cover facilitate consistency and utility (Carney et al. 2022 and Früh et 
al. 2018).

Visit this link: https://docs.google.com/document/d/
1ncswBfPBSlOAj4UF-zQdq3uzfE1BmiL0arbDoaxqcS4/edit?
usp=sharing  
Code and datasets available at request: https://drive.google.com/
drive/folders/1zk1vBAcw64MJQGkPrW5rDLd3ZnWQpUWT?
usp=sharing 
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Figure 1: ArcGIS map of larvae count in Los Angeles, Orange, and Riverside counties.

Figure 2: Land Cover Photo in our AOI documententing seasonal changes in vegetation 
like the process of leaves changing color and falling from trees as a result of cooling 
temperatures.

Ecological Variables and WNV: We converted Ecological Data and 
WNV data from daily data into averaged weekly data based on the 
CDC’s MMWR Epidemiological week format and limited to weeks 
24-53 based on WNV data availability and consistency. We then 
padded our ecological data using means calculated across each 
year’s mosquito season and padded our WNV data with zeros. 
Data sources: California Department of Water Resources Irrigation 
Management Information System, United States Environmental 
Protection Agency, MODIS sensor outputs recorded on the NASA 
Aqua satellite, CHHS California Department of Public Health. 

Figure 3: Los Angeles Ecological Variables Graph from data collected from 2006-2021 
with a five week lag.

Figure 4: graph of West Nile Virus Infections from 2006-2021.

Time Lag: We tested various time lags for the ecological variables 
because Lopez et al. (2014), Ligot et al. (2021), and Schneider et al. 
(2021) emphasized the importance of the incorporation of time lag in 
order to obtain accurate predictions. We started by testing a three 
week time lag then evaluated five, six, and eight week lags. We found 
that a lag of 5 weeks aligned best with our WNV data.

Model Overall MAE Overall RMSE Minimum 
RMSE

Maximum 
RMSE

Range of 
Desired 
Output

RBF SVM 0.514808 0.91283 9.0204e-05 0.37031 5.6596

Linear SVM 0.55336 1.0024 0.000167 0.39182 5.6596

Sigmoid SVM 0.54848 1.0086 0.00012 0.39083 5.6596

RF Regressor 5.74241 8.18072 0.00401 2.9433 59

Table 1: a variety of error metrics used to contextualize our 4 models’ performance

Ecological Variable RF Feature Importance

Average Relative Humidity 0.14559

Average Air Temperature 0.41017

Precipitation 0.02372

Average Wind Speed 0.12840

AQI 0.12990

EVI 0.16222

Figure 5: This graph describes our RF regressor’s predictions in magenta and the actual WNV 
cases recorded in gray.

Figure 6: This graph describes our linear SVM   regressor’s predictions in orange, RBF SVM  
regressor’s predictions in green, sigmoid SVM  regressor’s predictions in orange, and the actual 
WNV cases recorded in gray. 

Table 2: This table details our RF regressor’s feature importance

Conclusion
In summary, our machine learning models forecast the absolute 
number of WNV infections five weeks in advance using open access 
ecological variables and remote sensing data. Our methodology and 
results hold valuable insight for the development of early warning 
systems that aid healthcare and government officials in preparing for 
and preventing incoming WNV outbreaks. Our predictions are 
particularly valuable when assessed from a resource allocation 
standpoint, as the five-week lead time they provide can aid 
healthcare providers in predicting when they must prepare to 
increase capacity. This early notice is critical to avoiding preventable 
deaths. 
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