
Abstract
Mosquito-borne diseases (MBDs) such as dengue virus, chikungunya 
virus, and West Nile virus, cause over one million deaths globally every 
year. Because such diseases are spread by the Aedes and Culex
mosquitoes, tracking these larvae is critical to mitigating the spread of 
these diseases. Even as citizen science projects to obtain large mosquito 
image datasets continuously grow, the manual annotation of mosquito 
images becomes ever more time-consuming and inefficient. Previous 
research has seen computer vision utilized to identify mosquito species, 
and the Convolutional Neural Network (CNN) has become the de-facto 
for image classification, but these models typically require substantial 
computational resources. This research introduces the application of the 
Vision Transformer (ViT) in a comparative study to improve image 
classification on Aedes and Culex larvae. Through the utilization of 
mosquito larvae image data from the GLOBE Observer Mosquito 
Habitat Mapper, two ViT models, ViT-Base and CvT-13, and two CNN 
models, ResNet-18 and ConvNeXT, from the HuggingFace library were 
trained and compared to determine the most effective model to classify 
mosquito larvae as Aedes, Culex, or neither. Testing revealed that 
ConvNeXT obtained the greatest values across all four classification
metrics. ConvNeXT is found to be a viable method for mosquito larvae 
image classification. Future avenues of research include creating and 
implementing a model specifically designed for mosquito larvae 
classification, combining elements of CNN and transformer 
architecture, based on the results of this research.
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Introduction
Among Earth’s most deadly species, mosquitoes are among the deadliest. In fact, 
mosquito-borne diseases (MBDs) are responsible for at least 725,000 deaths annually 
(Barcelona Institute for Global Health, 2017). While MBDs have challenged humans for 
generations, factors like urbanization, climate change, and population growth have only 
exacerbated the issue (Sutherst, 2004).

MBDs are especially dangerous because mosquitoes transmit viruses easily. The three 
types of mosquitos are the Aedes, Culex, and Anopheles mosquitoes. Aedes and Culex
mosquitoes are especially deadly because they can breed anywhere, not just in natural 
environments. For instance, the female Aedes aegypti mosquito can lay eggs in any moist 
and warm environment. In Brazil, the Aedes aegypti species alone started a Zika epidemic 
and caused 2,500 cases of microcephaly, a condition where a baby’s brain has not 
developed properly (LaFrance, 2016). Additionally, Culex mosquitoes rapidly spread the 
West Nile virus, the leading cause of MBD in the United States (CDC, 2022).

The spread of MBDs can be prevented by classifying mosquito larvae, which are 
distinguishable by their siphon. Larvae classification allows health officials to track 
mosquito populations in an area, learn which species thrive in certain environments, and 
forecast the presence of invasive species to prevent outbreaks, as only certain mosquito 
species transmit certain viruses (Joshi, 2021). This preventative approach is important 
because many MBDs like dengue virus and West Nile Virus, which has become endemic 
in the U.S., have no vaccine or treatment (CDC, 2021; Petersen, 2017).

Recent research has focused on the use of artificial intelligence (AI) as an alternative to 
manual classification. For image classification, convolutional neural networks (CNNs) 
and vision transformers (ViTs) are the most common. CNNs perform convolution to 
locally extract features from an image and produce a feature map, from which the 
network can classify an image. Many past works have previously applied CNNs to 
identify mosquito-specific tasks. Goodwin et al. (2021) achieved an accuracy of 89.50% 
when identifying unknown mosquito species and 88.72% when identifying known species 
with CNNs. Elango et al. (2022) compared CNNs with the You-Only-Look-Once (YOLO) 
algorithm to predict mosquito habitats, and the YOLOv4 CNN worked best. The study 
concluded that CNNs were the most efficient and cost-effective approach to predict large-
scale mosquito habitats, but were unable to identify small-scale habitats such as 
footprints, tires, or puddles.

While CNNs were the longtime state-of-the-art machine learning for image classification, 
Dosovitskiy et al. (2021) proposed a novel architecture that outperformed CNNs: the ViT.
Rather than convolutions, the ViT uses self-attention to integrate all features of the data. 
Unlike CNNs, ViTs have not been extensively applied to mosquito-related tasks. Thus far, 
Sengar et al. (2022) reached an accuracy of 90.03% in using ViTs to predict malaria using 
thin blood smear microscopic images.

This work seeks to compare the CNN to the ViT for mosquito larvae classification to 
proactively prevent the spread of MBDs. This study compares four machine learning 
models to classify larvae as Aedes, Culex, or neither, a distinction from many previous 
works.

Methodology
• Data was acquired through the GLOBE Mosquito Habitat Mapper database. 

(data collection dates ranged from May 31, 2017 to July 7, 2022, and data from 
Africa, North America, and Latin America was collected)

• After downloading the data using a spreadsheet builder, each image was 
carefully classified as Aedes, Culex, or neither, based on the length and shape 
of the siphon, color of the larvae, and amount of hair

• The spreadsheets were converted into CSV files and extraneous commas were 
removed to avoid blank columns

• Image links that were no longer supported were also removed using a separate 
script that identified incorrect HTTP codes, and null values were reviewed and 
validated

• After preprocessing, the Africa data  was used for training and consisted of 
7107 rows and the Americas data was used for testing with 3439 rows

Results and Discussion

The ConvNeXT scored the highest on all four classification metrics. This was likely due to 
the combination of standard transformer techniques with state-of-the-art CNN models like 
ResNet-50. Depthwise convolutions would also play a role in the robustness of the 
network by providing additional network width for the data to be more integrated than the 
other models.
All four models had similar performances, with all around 60%, but had much lower 
values than expected. This general finding could be due to the regional difference between 
the training and testing data. In the Africa train data, there were 3917 rows of Aedes, 2405 
rows of Culex, and 785 rows of “neither.” In the Americas test data, there were 2062 rows 
of Aedes, 1253 rows of Culex, and only 124 rows of “neither.” The percentage of “neither” 
rows in the Africa data was 11.05% while the percentage in the Americas data was 3.61%. 
This regional difference in the number of mosquito larvae that were not Aedes or Culex
might have contributed to the lack of accuracy from training to testing.
Another issue that was faced during the training of the models was overfitting. Overfitting 
is when a model fits exactly to its training data to the point that it almost “memorizes” the 
data. As a result, the model is unable to classify on new, unseen test data, resulting in poor 
accuracy. One reason for overfitting could be the size of the models. The ViT-Base model 
had 86 million trainable parameters, the CvT-13 had 19.98 million parameters, the 
ConvNeXT had 89 million trainable parameters, and the ResNet-18 had 11 million 
parameters. Adding parameters to a model increases the likelihood of overfitting because 
more parameters means the more closely the model will fit to the training data, as opposed 
to recognizing broader trends that could be used on the testing data. Additionally, 
overfitting could also be observed during training, as the training loss kept decreasing at a 
steady rate, while the evaluation loss decreased for a short amount of time before rising up
and continually increasing.

Conclusion
Although all four models performed similarly for classifying mosquito larvae images as 

Aedes, Culex, or neither, the metric values were much lower than expected. It is likely that the 
models yielded lower accuracies because of the variation of regional data from the training and 
testing dataset. From this result, it seems that CNNs with depthwise separable convolutions 
perform better in complex image classification tasks than purely attention-based models.
Future research could include the integration of mosquito species as opposed to genera to narrow 
down the features of each specific mosquito. Mapping could also be performed by correlating the 
mosquito species to the most likely disease it spreads. The dataset could be further expanded to 
higher-quality images that reveal the whole larvae body as opposed to a single part.. A novel 
model could also be created with the sole purpose of mosquito larvae image classification by 
utilizing depthwise convolutions and aspects of the transformer architecture, creating a hybrid 
CNN and ViT model like the CvT-13 and the ConvNeXT. During the training process of said 
models, a finer, more thorough analysis could be conducted using methods such as increasing the 
number of epochs, raising the probability of dropout, and adding specific data preparation 
techniques. Through this approach, epidemics can be controlled efficiently and at a rapid pace by 
locating and identifying potentially dangerous mosquito larvae. There are several cases where 
rapid mosquito larvae identification and classification are necessary for public health control. 
Extrapolation of key features from vision transformers and convolutional neural networks to 
create a more efficient model would prove as a viable, cost-effective, and autonomous approach to 
controlling the spread of mosquito-borne diseases.
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Between vision transformers (ViTs) and convolutional neural networks 
(CNNs), which machine learning model is best to classify Aedes and 
Culex mosquito larvae to prevent mosquito-borne diseases?

• 2 vision transformer models (ViT-Base and CvT-13) and 2 convolutional 
neural network (ResNet-18 and ConvNeXT) models were finetuned using 
the mosquito larvae image data 

• The ViT-Base model works by breaking down an input image into equal-
sized batches and using a multi-attention layer to capture features of the 
image in parallel in the relative position of each feature

• Then the image is passed into an MLP Head to understand specific details 
of each feature

• Finally the output is passed into the classification layer where the image is 
classified into categories

• The Residual Network (ResNet) was created to solve the issue of the 
vanishing gradient in conventional CNNs. This occurred when more 
layers were added to make the network deeper, causing the network to 
essentially “forget” what it was learning

• To solve this ResNets introduced skip connections between layers that 
allowed gradients to flow from the final layers to the initial filters, 
retaining information

• The ResNet model tested in this project was the ResNet-18, a ResNet
with 18 layers and a popular CNN benchmark

• Due to the state-of-the-art performances of vision transformers, the 
ConvNeXT was created to prove that a pure convolution model could 
compete and outperform the latest attention-based architectures

• It was created by gradually modifying a ResNet-50 through replicating 
training techniques from transformers such as increasing the number of 
epochs, using the AdamW Optimizer, and replacing the ReLu activation 
function with the GELU activation

• Depthwise convolutions were also utilized in the training
• The results of the ConvNeXT compared to the ViT and ResNet on the 

ImageNet dataset are shown below:

• The evaluation metrics were accuracy, precision, recall, and F1 score. 
• Each metric relies on the number of true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). 
• The equations for each metric are listed below:

• Each model was imported and trained using the HuggingFace Library
• A feature extractor was applied to each model and the image data was 

augmented with transformations
• Each classification head was altered to 3 to account for the three types of 

classification
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• The Convolutional Vision Transformer (CvT) introduced convolutions to 
the vision transformer architecture by implementing depthwise
convolutions in the transformer block, instead of the normal linear 
projection found in ViTs.

• A Convolutional Embedding Token also applies convolutions on patches of 
the image and reshapes them, increasing their depth, similar to conventional 
CNNs

IVSS Badges

Data Science: This badge is 
being applied for due to the large 
amount of data collected from 
GLOBE Observer from 2017 to 
2022 in North America, South 
America, and Africa. Several 
data preparation techniques were 
utilized to ensure high-quality 
data of mosquito larvae. We 
employed this data to compare 
state-of-the-art vision 
transformer models and CNN 
models on how well they did in 
classifying each image as Aedes, 
Culex, or neither. We also 
released this data to the public as 
a database of mosquito larvae 
images, which is available at 
https://huggingface.co/datasets/T
heNoob3131/mosquito-data.

Engineer: This badge is being 
applied because we utilized 
feature extraction and data 
augmentation to improve the 
performance of our ViT-base 
model, ConvNeXT model, 
ResNet-18 model, and CvT
model. This, in turn, allows us to 
determine which model is most 
capable to classify mosquito 
larvae species, providing a 
solution to scientists and 
researchers out in the field to 
quickly identify mosquito larvae 
and prevent potentially 
dangerous diseases.

Impact: This badge is being 
applied as a result of our models 
being the first to classify Aedes, 
Culex, or other species as larvae, 
as opposed to adult 
classification. Therefore, our 
research enables scientists to 
identify disease-carrying 
mosquitoes before they fully 
develop into adults and 
contributes to the active 
prevention of mosquito 
epidemics worldwide.
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