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Abstract

Mosquitoes are major vectors of disease and thus a key public health concern. Some cities

have programs to track mosquito abundance and vector competence, but such fieldwork is

expensive, time-consuming, and retrospective. We present a comparative analysis of two

machine-learning-based regression techniques for forecasting the rate at which mosquito

abundance changes and the rate at which mosquitoes test positive for West Nile Virus

(WNV) in our AOI, the City of Chicago, three weeks in advance. We selected an initial

pool of climatic inputs based on the findings of prior work. Ordinary least squares

regression was run on each input individually and then in various groups. A p-value cutoff

of 0.05 was used to determine which were best suited for predicting the derivatives of

mosquito abundance and WNV positivity rate. Using these inputs, we trained four

machine learning models using two types of regression: a Random Forest Regressor (RFR)

and Backward Elimination Linear Regression (BELR). We optimized our RFR’s

hyperparameters using Randomized Search Cross Validation and further reduced our

BELR inputs using a p-value of 0.05. The enhanced vegetation index and temperature,

described in various metrics, emerged as common inputs across the four models. In three of

the four models, the respective temperature metric was the most important feature, while

EVI varied between second and last place. Our root mean square error largely resided

within the hundredths place or less, but spiked at novel, week-to-week extremes in the

testing data. Our methodology and results indicate valuable directions for future research

into forecasting mosquito population abundance and vector competence. This work is

particularly applicable to public health programs – our models’ use of open-source, remote

sensing data to predict, three weeks in advance, how quickly the mosquito population and

their vector competence will change streamlines disease monitoring and prevention.

Keywords: mosquito-borne disease, mosquito abundance, remote sensing, machine

learning, West Nile virus
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Predicting West Nile Virus Positivity Rates and Abundance: A
Comparative Evaluation of Machine Learning Methods for

Epidemiological Applications

Research Question

Which machine learning models and climatic inputs are most effective for predicting

the derivatives of mosquito abundance and mosquito West Nile virus positivity?

Introduction and Review of Literature

Mosquitoes are vectors for several highly infectious diseases, including dengue,

malaria, and West Nile Virus (WNV). Therefore, tracking mosquitos is crucial for

preventing and combating outbreaks of mosquito-borne disease. Currently, tracking

mosquito abundance and vector competence relies on government-funded fieldwork in

which mosquito traps are continually tended to and monitored as a means of estimating

these metrics. This process is expensive, time-consuming, and retrospective. Machine

learning models thus hold valuable potential for streamlining and expanding this process

through their predictive abilities. We present a comparative analysis of two

machine-learning-based regression techniques for forecasting the rate at which mosquito

abundance changes and the rate at which mosquitoes test positive for WNV.

Machine learning models are powerful predictive tools, particularly for

regression-based tasks such as ours. The Random Forest (RF) Classifier is popular within

the remote sensing community due to its ability to handle high data dimensionality and its

insensitivity to overfitting (Belgiu & Drăguţ, 2016). When stimulating spatial distribution

of arbovirus vectors, RF models obtained the highest accuracy (Ding et al., 2018). Given

the high functionality and success of the RF Classifier, we looked into its regressor

counterpart to fit our prediction goals. The Random Forest Regressor is particularly

applicable to our work, as our desired output consists of numerical metrics across a

continuous time series. Prior work, such as Lee et al. (2016), also found success with
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multiple linear regression. In particular, Project AEDES implemented backward

elimination linear regression to predict the number of Dengue cases per month in a

specified location, based on weather variables (temperature and rainfall) and google search

trends (Ligot et al., 2021). Hence, we evaluated the performance of a Random Forest

Regressor (RFR) and Backward Elimination Linear Regression (BELR) for each prediction

task. Our selection of precipitation, temperature, humidity, and vegetation metrics as

model inputs was informed by the success of prior work. Francisco et al. (2021) used

monthly average precipitation, average land surface temperature, and flood susceptibility

data to prove a significant correlation between precipitation and dengue outbreaks at a

one-month lag in Manila, Philippines. Hassan et al. (2013) derived environmental variables

such as urbanization level, Land Use Land Cover, Normalized Difference Vegetation Index

(NDVI) from Landsat TM5 and Ikonos imageries to characterize landscape features likely

associated with mosquito breeding habitats in Cairo, Egypt; land cover type and

vegetation proved important indicators of potential mosquito habitats. Früh et al. (2018)

trained a variety of machine learning models on citizen science data to predict the

occurrence of Aedes japonicus japonicus, an invasive mosquito species in Germany. Their

work indicated that mean precipitation, mean temperature, and drought index were the

most accurate predictors of mosquito occurrence. Chen et al. (2019) indicated that

landscape factors alone yield equal or more accurate modeling when compared to or paired

with socioeconomic factors. Consequently, we pursued a hybrid citizen-science and

government data approach where we evaluated the performance of a variety of machine

learning regressors powered by the aforementioned ecological factors.

Research Methods

Our Area of Interest

Chicago, Cook County, is located in the midwestern United States along Lake

Michigan. It has a distinct, four season climate, with hot, humid summers and cold, windy
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winters, and an average annual precipitation of 34 inches (US Department of Commerce,

2021). The city’s natural topography is flat, though there are steep bluffs and ravines along

Lake Michigan in the north, and sand dunes to the south. Land cover is made up almost

entirely of high-density urban areas, with few spots of forested land (Luman et al., 2004).

Chicago’s mosquito infestation has also long been a serious public health concern. For the

past five years, Orkin has ranked Chicago in the top five cities with the most mosquitoes; a

recent examination of Chicago mosquito surveillance data also revealed high West Nile

Virus incidence in the city (Orkins, 2021; Roberts, 2021). Cook County experienced major

outbreaks of West Nile Virus in recent years — 98 human cases in 2016, 52 in 2017, and

104 in 2018 were reported to CDC’s ArboNet. Ultimately, our decision to focus on Chicago

as our area of interest (AOI) was largely motivated by both the prevalence of mosquitoes

and West Nile virus and the availability of comprehensive, open-source mosquito data.

Data Retrieval and Pre-processing

The following procedures were employed to translate climatic inputs and mosquito

abundance and WNV positivity outputs of various resolutions to a common time scale and

scope. The time scale utilized was the CDC’s epidemiological weeks and our scope was the

entirety of the City of Chicago. Our final dataset consisted of our climatic inputs and the

derivatives of mosquito abundance and WNV positivity recorded from weeks 22 to 40 of

each year from 2007-2020.

Obtaining Ecological Variables. We used Google Earth Engine to export

satellite and weather data in weekly timesteps. We retrieved hourly land surface and

near-surface temperatures and precipitation from ERA5 provided by the European Centre

for Medium-Range Weather Forecasts (ECMWF); hourly specific humidity from

NLDAS-2:North American Land Data Assimilation System Forcing Fields provided by

National Centers for Environmental Prediction (NCEP), Goddard Earth Sciences Data and

Information Services Center (GES DISC), Princeton University, and the University of
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Washington; and day and night land surface temperature from the MODIS sensor on Aqua

provided by Land Processes Distributed Active Archive Center (LP DACC). The daily EVI

(Enhanced Vegetation Index) from the MODIS sensor on Aqua was provided by Google.

We obtained most of our ecological data from ERA5 as it aggregated the independent

variables we needed in one place at a uniform, high level of precision. We chose the Aqua

satellite data for the day and night temperatures as it provided a full dataset across our

time series of interest, 2007-2020. We also obtained our EVI measurements from Aqua, as

it provided the only dataset with small enough timesteps to fit within the weekly timestep

of our mosquito data and provided uniformity across the night and day temperatures and

EVI measurements. We separated these ecological variables into 731 week-long timesteps

ranging from December 31, 2006 to January 2, 2021: these weeks align with the CDC’s

epidemiological year. To calculate the climatic variables’ means, their respective data

points within each epidemiological week were averaged. The weekly averages for all sample

points within the city limits of Chicago were then averaged once more to produce a single

value describing the City of Chicago for each metric, week by week. To calculate the

maximum and minimum values, the maximum and minimum data points within each week

were selected. Then, the weekly maximums and minimums for all sample points within the

city limits of Chicago were averaged to produce a single value for each week. To calculate

weekly total precipitation, the data points within each week were summed, then the weekly

sums for all sample points within the city limits of Chicago were averaged to produce a

single value for each week. The city limits of Chicago used for filtering our data points

were obtained from the official City of Chicago website.

Obtaining GLOBE Mosquito Habitat Mapper Data. With the objective

of conducting a comparative analysis of machine learning models using citizen science data,

similar to Früh et al. (2018), our team initially analyzed the Mosquito Habitat Mapper

(MHM) dataset from GLOBE Observer, which records user egg and larvae submissions

from natural and artificial mosquito habitats. As interns in the NASA SEES program, we



PREDICTING WEST NILE VIRUS POSITIVITY RATES AND ABUNDANCE 7

contributed to this global dataset with our own mosquito observations. Our data

contribution consisted of two parts: 3-5 artificial mosquito traps maintained for 6 weeks as

well as mosquito habitat and land cover data recorded in an evenly spaced, 3 kilometers

square, 36-point grid. All observations were taken near the interns’ residences across the

West Coast, East Coast, and Western Canada. The traps were made of artificial containers

and baited with dog food, fermented grass, fish food, timothy hay, or pond water. The

traps were checked weekly and observations were recorded using the GLOBE Observer

app’s MHM function; MHM and Land Cover observations at each point of the 36-point

grid were recorded as well. We processed mosquito data uploaded by citizen scientists

through the GLOBE Observer app using the go_utils Python library provided by GLOBE

and the go_utils API. To visualize the data and determine possible AOIs, we collected all

United States MHM recordings starting from the inception of MHM in 2017 to the present

day. We then cleaned the data, organizing the submissions by state, county, and city, and

removing any logs that did not submit egg/larvae count. The remaining points were

mapped on ArcGIS, and the following regions were pinpointed as areas with the most data:

Los Angeles, California and Harris County, Texas. Although the two counties had the

greatest number of MHM GLOBE submissions relative to other areas, the frequency of

recordings was inconsistent. To supplement the MHM data, we reached out to the

governments of Los Angeles and Harris for access to the mosquito data collected through

local government initiatives. Due to time and legal constraints, our request could not be

accommodated. In our search for an open-source dataset, we found the highly

comprehensive City of Chicago West Nile Virus Mosquito Test Results dataset, which

contained consistent data on the number of mosquitoes captured through Gravid and CDC

traps from 2007 to 2021 and how many of those mosquitoes tested positive for WNV. In an

attempt to mesh this dataset with MHM data, both the City of Chicago data and Cook

County MHM data were mapped against the boundaries of the City of Chicago in ArcGIS

(see Figure 2). No MHM points fell within city limits; as our largest dataset resided solely
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within the City of Chicago, we could not mesh it with MHM data. Land cover data from

GLOBE Land Cover in Chicago was similarly cleaned, but also yielded insufficient quantity

within our AOI for analysis. Although the GLOBE Observer project’s data was not

applicable to our study, our search revealed that GLOBE MHM data was remarkably

comparable to official, government-collected mosquito trap data — we hope future

improvements on our models will utilize that potential.

Pre-processing the City of Chicago’s West Nile Virus Mosquito Test

Results. The City of Chicago’s open access West Nile Virus Mosquito Test Results data

was downloaded through the Chicago Data Portal. This data contains the results from

Gravid and CDC mosquito traps located across the City of Chicago measured on a weekly

basis throughout summer from 2007 - 2021. This data provided two crucial metrics for our

project: the number of Culex mosquitoes captured at each trap and the number of Culex

mosquitoes captured that tested positive for West Nile Virus, meaning they were capable

of transmitting it. This data was cleaned in Python using Pandas, Numpy, SciKit Learn,

and Epi Weeks. First, the CDC trap data was removed, as our study focuses on the results

of Gravid trap data alone. Then, the weekly measurements were aligned with the

epidemiological year using Epi Weeks and the date on which each record was logged. We

quantified weekly mosquito abundance as the number of mosquitoes divided by the number

of total traps in the area, and West Nile Virus positivity rate as the number of mosquitoes

testing positive for the disease divided by the mosquito abundance. Points of discontinuity

across the summer months were identified and analyzed: 2009 and 2011 displayed the least

continuity. Weeks 22 through 40 emerged as the widest common range across the data:

seven out of the total 13 years contained records for either week 22, week 40, or both. We

filled in the missing data points for weeks 22 through 40 every season using SciKit Learn’s

imputer. We graphed the original dataset against the dataset when filled with the Median

and Most Frequent methods. Filling in weeks of missing data for the number of mosquitoes

observed (Figure 7) and for the number of positively tested mosquitoes (Figure 8) was
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most accurate when using the most frequent value for each respective season.

Introducing Lag. Lopez et al. (2014) observed higher correlations between

dengue outbreaks and environmental factors when time lags were introduced. Inspired by

this work, we examined the relationship between the various climatic variables collected

from our literature review and the mosquito abundance and positivity outputs. We

graphed the climatic variables vs. mosquito abundance and the climatic variables vs. West

Nile Virus positivity using Plotly, an open-sourced Python graphing library. In doing so,

we aimed to observe the extent and necessity of shifting our weather and land cover

variables to account for any delayed effects on mosquito abundance or WNV positivity.

Although the two line plots suggested positive correlations between the environmental

variables and mosquito prevalence/disease positivity rates, time lags seemed to occur

between the inputs and outputs. We therefore shifted EVI, Land Surface Temp, and

Specific Humidity (as it relates to mosquito abundance), and total precipitation (as it

relates to West Nile Virus positivity rates) three weeks forward in time. As shown in

Figure 9, shifting Land Surface Temp, Specific Humidity, and EVI three weeks forward

yielded more similar peaks in relation to the mosquito abundance output. Figure 10 also

demonstrates that similar peaks in total precipitation and West Nile Virus positivity rates

were achieved after shifting precipitation three weeks forward. Thus, after correcting for

the time lags, the peaks in both graphs were better aligned, producing results with higher

correlations - as later solidifed through OLS regressions seen in Table 1 - between

ecological inputs and mosquito and vector competence outputs.

Data Characteristics. Having identified the optimal filling method and lags,

we then padded our data using the Most Frequent filling method, extending the weeks in

each summer to 21-41. This enabled us to calculate the derivative of mosquito abundance

and WNV positivity for our weeks of interest, 22 - 40. We elected to predict the derivatives

of mosquito abundance and WNV positivity as it enables our models to act as predictors

for the state of the mosquito population in our AOI. While predicting the raw mosquito
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abundance and WNV positivity numbers would describe what quantities public health

officials could expect to see in their traps, knowing the derivatives of these metrics provides

a holistic view into how the mosquito population in the AOI is changing and how quickly

they are becoming more or less potent vectors of disease. The mean, standard deviation,

and range of the ecological inputs and mosquito population characteristics outputs are

provided in 2. The derivatives of mosquito abundance and mosquito WNV positivity

display high variability, as evidenced by their standard deviations that both vary by 103

from their means at times.

Developing the Machine Learning Models

The following procedures were employed to select statistically significant climatic

inputs for predicting the derivatives of mosquito abundance and WNV mosquito positivity.

The inputs that proved statistically significant for each prediction task were then used to

train a Random Forest Regressor (RFR) and Backward Elimination Linear Regression

(BELR), totaling four machine learning models.

Narrowing Down the Pool of Independent Variables. Having assembled

our initial pool of independent climatic variables (see 3) based on the findings of prior

work, we narrowed down our pool of inputs using ordinary least squares (OLS) regression.

First, we ran OLS regression on each input individually to establish which had statistically

significant correlations with mosquito abundance and which had statistically significant

correlations with mosquito WNV positivity using a p-value of 0.05. Then, we grouped the

promising climatic inputs for each prediction task into various sets and ran OLS regression

on each set (see Table 1). The results from the mosquito abundance OLS regressions

revealed EVI and land surface temperature as a statistically significant pairing on their

own and when incorporated into most groups; hence, we selected these two inputs. Based

on the established relationships between water and mosquito abundance, we looked into

which of our many water metrics were the best indicators. Total precipitation proved to be
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the most statistically significant of our precipitation metrics. Specific humidity also

displayed statistical significance on its own and when paired with various other metrics,

such as EVI. However, both these water inputs were rendered statistically insignificant in

the OLS regression when paired on their own or together with EVI and land surface

temperature. We hypothesized this behavior was a result of OLS regression’s simplicity

paired with the non-linearities in the EVI, land surface temperature, total precipitation,

and specific humidity inputs, as evident throughout our graphs. Consequently, these four

indicators were used as the inputs to our mosquito abundance derivative RFR and BELR

models. The results from the WNV mosquito positivity OLS regressions indicated that

temperature was a statistically significant indicator; however, multiple temperature metrics

were statistically significant in different circumstances. Near-surface temperature, surface

temperature, and the near-surface temperature range were statistically significant on their

own, but not when grouped with other temperature metrics. Meanwhile, night-time

temperature was statistically significant on its own and when paired with day-time

temperature, but became statistically insignificant when paired with near-surface

temperature range. near-surface temperature range and average near-surface temperature

were statistically significant when paired with EVI and specific humidity, but they

rendered EVI and specific humidity notably insignificant with p-values of 0.194 and 0.296

and 0.446 and 0.762, respectively. Similarly, night-time temperature was statistically

significant when paired with EVI and specific humidity, but rendered EVI and specific

humidity statistically insignificant with p-values of 0.059 and 0.337, respectively. As

night-time temperature rendered EVI less statistically insignificant and near-surface

temperature range rendered specific humidity less statistically insignificant than the other

temperature metric pairings, we selected EVI, specific humidity, near-surface temperature

range, and night-time temperature as the inputs to our mosquito WNV positivity

derivative RFR and BELR models.
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Test-Train Split. For each prediction task, data from epidemiological weeks

22-40 of each year from 2007 - 2014 were used as training and data from 2015-2020 was

used as testing data. We did not include 2021 as, at the time of development, we had not

yet reached the 40th epidemiological week in 2021 and did not want to introduce an

unknown effect into our models’ predictions by providing it an unfinished season of data.

Consequently, our test-train split was 57.14% to 42.86%.

Training the Models. We trained an RFR and BELR to predict the derivative

of mosquito abundance and an RFR and BELR to predict the derivative of mosquito WNV

positivity. The RFRs were built using SciKit-Learn’s RFR model and trained using its

Randomized Search Cross Validation tool — Table 4 details the possible settings for each

feature. On running 100 iterations with three cross folds each, the RFRs with the

parameters in Table 5 emerged as the best performing for each prediction task. Figure 11

displays the feature importance for each RFR model. The BELRs were built using Sci-Kit

Learn’s Linear Regression model and inputs were eliminated using OLS regression to

determine which inputs were statistically insignificant to the BELR’s predictions.

Results

Tables 6 and 7 detail the performance of the RFR and BELR models for each

prediction task using overall MAE, overall RMSE, maximum RMSE, and minimum RMSE.

Overall MAE and RMSE provide a single value describing the prediction error for the

entire testing set, while Max RMSE and Min RMSE provide the maximum and minimum

values from the RMSE calculated at each time step in our testing set. We opted to provide

our general error metric in both MAE and RMSE as each provides a different view into

model performance: while MAE’s linear nature results in equal weight given to all errors,

RMSE’s nonlinear nature further penalizes errors that are larger in absolute values (Chai &

Draxler, 2014). Figures 12, 13, 14, and 15 provide a graphical representation of the

RMSE calculated at each time step. In comparing the overall MAE and RMSE values for
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the RFR and the BELR models used for each task, the BELRs outperforms the RFRs.

However, the RFR model for predicting the mosquito abundance derivatives has a

minimum RMSE almost 3 times smaller than the BELR’s. Similarly, the RFR model for

predicting the mosquito WNV positivity derivatives has a minimum RMSE almost 2.5

times smaller than its BELR counterpart. This indicates that the RFR models are capable

of predicting the desired output more closely than the BELR models: a result supported by

RFR’s ability to fit nonlinear data, as opposed to BELRs which can only fit linearly.

Table 8 compares the overall RMSE of our RFR and BELR models to that of a

similar study by Lee et al. (2016) that aimed to predict mosquito abundance using a

multiple linear regression (MLR) and an artificial neural network (ANN). Our mosquito

abundance derivative models display a lower overall RMSE for larger ranges in the desired

output. Additionally, our mosquito WNV positivity derivative models’ overall RMSE

comprises a smaller fraction of the desired output’s range than that of Lee et al. (2016).

Given the high variability of the desired mosquito population characteristic output as seen

in Table 2 and the extreme outliers evident at points such as week 29 in 2016 in Figures 12

and 14, our models’ errors are comparatively low and demonstrate strong overall

performance.

Discussion

In this study, we present a comparative evaluation of four machine learning models

for two mosquito population and vector competence prediction tasks and assess the

statistical significance of a variety of climatic inputs for doing so. Our results show that

these models improve on prior work’s ability to predict how quickly the mosquito

population is growing or declining and how quickly mosquitoes are becoming disease

vectors for West Nile in an AOI. Particularly noteworthy is how temperature was a crucial

input in all of our models, but each model performed better with a different temperature

metric or combination of metrics. The RFR for predicting the mosquito abundance
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derivative preferred full day surface temperature; the RFR for predicting the WNV

mosquito positivity derivative preferred a combination of full day near surface temperature

and full day land surface night temperatures; the backward elimination model for the

abundance derivative preferred full day surface temperature; and the backward elimination

model for positivity preferred land surface night temperatures alone. Unlike much of the

literature that informed our research, precipitation did not prove a significant factor across

our machine learning models. However, indirect measurements of water quantity, such as

EVI, did prove crucial and common across all models. This may be the result of differences

between our AOI and that of other studies or the OLS regression we used to narrow down

our climatic inputs, which only fits — and therefore deems significant — linear

correlations. These findings, among others elaborated in our report, provide avenues for

further research and a deeper understanding of how mosquito populations thrive and

become more potent disease vectors in response to climatic variation. Similarly, there

remain areas for improvement upon our research. First, we applied our methodology to a

single area of interest — to test its robustness, future work should see how well the

development procedure adjusts to different areas of interest. Second, we averaged data over

the entirety of Chicago, making our predictions applicable to the whole of Chicago but not

specific to a single area within it. With more consistent and detailed data recorded on

more frequent time steps, our model would likely perform better and output predictions

further localized to mosquito and West Nile hotspots within the greater City of Chicago.

Conclusion

In summary, our models accurately predict the derivatives of mosquito abundance

and mosquito WNV positivity in our AOI. Our methodology and results hold potential for

valuable applications to public health programs and concerns. As our ecological variables

are lagged three weeks forward in time for training purposes, our models can be used in

real-time as predictors for the derivatives of mosquito abundance and WNV mosquito
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positivity three weeks in advance — providing public health officials with critical

information on the development of mosquito populations in time for appropriate

intervention and mitigation. Our work builds on recent predictive models, such as that of

Koolhof et al. (2020), who created a predictive early warning forecast model for the

transmission of Ross River Virus, a mosquito-borne disease in Australia, by time-lagging

several environmental predictors of the disease. Their model does not use remote sensing

data; instead, it uses monthly averages from measurements taken on the ground. In

contrast, our model provides predictions on a weekly basis, which ultimately allows for a

more precise prediction. Avenues for future work and development on our results revolve

around how to further increase accuracy and best incorporate our methodology into

existing public health initiatives. In the data science sector, additional machine-learning or

deep-learning based regression models’ performance in these tasks should be evaluated and

further research should be directed into how to optimize the performance and

hyperparameter tuning of our RFR and BELR models. In the public health sector, there

remains room for further collaboration between data scientists and public health officials to

turn our results into actionable metrics that align with and enhance the efficacy of current

public health programs dealing with mosquito-borne diseases.
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Table 1

P-values of Ecological Variables, including single and multi-inputs, after performing OLS

Regression (mosquito abundance). An asterisk (*) denotes p value <0.05, indicating

statistical significance.

Indicator(s) for Mosquito Abundance P Value >|t|

Minimum Precipitation

Maximum Precipitation

Maximum Full-Day Land Surface Temperature

Maximum Full-Day Near-Surface Temperature

Minimum Full-Day Land Surface Temperature

Minimum Full-Day Near-Surface Temperature

Full-Day Land Surface Temperature

Full-Day Near-Surface Temperature

Total Precipitation

Average Specific Humidity

Average Enhanced Vegetation Index

Average Day Land Surface Temperature

Average Night Land Surface Temperature

Full-Day Land Surface Temperature Range

Full-Day Near-Surface Temperature Range

Difference between Near-Surface Temperature and Land Surface Temperature

0.122

0.356

0.223

0.356

0.223

0.737

0.737

0.188

0.255

0.191

0.657

0.892

0.348

0.133

0.784

0.002*

Minimum Precipitation

Maximum Precipitation

0.047*

0.000*

Minimum Precipitation

Maximum Precipitation

Total Precipitation

0.219

0.928

0.000*
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Table 1

P-values of Ecological Variables, including single and multi-inputs, after performing OLS

Regression (mosquito abundance). An asterisk (*) denotes p value <0.05, indicating

statistical significance.

Indicator(s) for Mosquito Abundance P Value >|t|

Maximum Full-Day Land Surface Temperature

Minimum Full-Day Land Surface Temperature

0.191

0.241

Maximum Full-Day Land Surface Temperature

Minimum Full-Day Land Surface Temperature

Full-Day Land Surface Temperature

0.686

0.866

0.679

Full-Day Land Surface Temperature 0.002*

Full-Day Near-Surface Temperature 0.005*

Full-Day Land Surface Temperature

Full-Day Near-Surface Temperature

0.172

0.438

Full-Day Land Surface Temperature

Full-Day Land Surface Temperature Range

0.805

0.004*

Difference between Near-Surface Temperature and Land Surface Temperature 0.203

Full-Day Land Surface Temperature Range 0.388

Full-Day Land Surface Temperature

Difference between Near-Surface Temperature and Land Surface Temperature

0.438

0.005*

Average Day Land Surface Temperature 0.352

Average Day Land Surface Temperature

Average Night Land Surface Temperature

0.773

0.030*
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Table 1

P-values of Ecological Variables, including single and multi-inputs, after performing OLS

Regression (mosquito abundance). An asterisk (*) denotes p value <0.05, indicating

statistical significance.

Indicator(s) for Mosquito Abundance P Value >|t|

Average Night Land Surface Temperature 0.016*

Average Night Land Surface Temperature

Full-Day Land Surface Temperature

0.684

0.062

Average Enhanced Vegetation Index 0.394

Average Enhanced Vegetation Index

Full-Day Land Surface Temperature

0.023*

0.000*

Average Enhanced Vegetation Index

Full-Day Land Surface Temperature

Total Precipitation

0.032*

0.001*

0.403

Average Specific Humidity 0.042*

Average Specific Humidity

Total Precipitation

0.117

0.374

Average Specific Humidity

Average Enhanced Vegetation Index

0.022*

0.152

Average Specific Humidity

Average Enhanced Vegetation Index

Full-Day Land Surface Temperature

0.988

0.028*

0.006*



PREDICTING WEST NILE VIRUS POSITIVITY RATES AND ABUNDANCE 24

Table 1

P-values of Ecological Variables, including single and multi-inputs, after performing OLS

Regression (mosquito abundance). An asterisk (*) denotes p value <0.05, indicating

statistical significance.

Indicator(s) for Mosquito Abundance P Value >|t|

Average Specific Humidity

Average Enhanced Vegetation Index

Full-Day Land Surface Temperature

Total Precipitation

0.796

0.040*

0.007*

0.396
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Table 2

Mean, Standard Deviation, and Range for Ecological Inputs and Mosquito Population

Characteristics Outputs

Input Mean ± Standard Deviation Range

EVI 1.718630e-01 ± 4.1438e-2 0.027678 — 0.256264

Land Surface Temperature 2.953583e+02 ± 3.825502e0 283.137074 — 305.097237

Specific Humidity 1.210294e-02 ± 2.731e-3 0.0052 — 0.019949

Total Precipitation 2.793383e-01 ± 2.80093e-1 0.000042 — 1.353915

Near-Surface Temperature Range 1.430573e+01 ± 2.868203e0 7.779097 - 22.887282

Landsat Night Temperature 2.894261e+02 ± 4.599292e0 275.508599 - 298.45227

Derivative of Mosquito Abundance -6.203008e-02 ± 1.0006173e1 -55.0 - 43.0

Derivative of Mosquito WNV Positivity 9.398496e-06 ± 5.202e-3 -0.0265 - 0.017
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Table 3

Final pool of ecological variables considered in OLS regression testing.

No. Input Type

1 Average Full-Day Near-Surface Temperature

2 Minimum Full-Day Near-Surface Temperature

3 Maximum Full-Day Near-Surface Temperature

4 Maximum Full-Day Land Surface Temperature

5 Minimum Full-Day Land Surface Temperature

6 Average Full-Day Land Surface Temperature

7 Average Day Land Surface Temperature

8 Average Night Land Surface Temperature

9 Total Precipitation

10 Average Enhanced Vegetation Index

11 Average Specific Humidity

12 Maximum Precipitation

13 Minimum Precipitation

14 Difference between Near-Surface Temperature and Land Surface Temperature

15 Full-Day Near-Surface Temperature Range

16 Full-Day Land Surface Temperature Range
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Table 4

Possible values provided to the Randomized Search Cross Validation model selection tool

when developing RFR models.

Hyperparameter Tested Values

‘bootstrap’ [True, False]

‘max-depth’ [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None]

‘max_features’ [’auto’, ’sqrt’]

‘min_samples_split’ [2, 5, 10]

‘min_samples_leaf’ [1, 2, 4]

‘n_estimators’ [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000]

Table 5

Optimal hyperparameters for each RFR model.

Hyperparameter
RFR for predicting mosquito

abundance derivative

RFR for predicting mosquito

WNV positivity derivative

‘bootstrap’ True True

‘max-depth’ 50 20

‘max_features’ ‘sqrt’ ‘sqrt’

‘min_samples_split’ 4 4

‘min_samples_leaf’ 10 10

‘n_estimators’ 1200 2000
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Table 6

Error results for RFR and BELR models used to predict mosquito abundance derivatives.

Model Overall MAE Overall RMSE Max RMSE Min RMSE

RFR 5.311205 7.476696 3.699710 0.000921

BELR 4.454769 6.696208 3.318949 0.002721

Table 7

Error results for RFR and BELR models used to predict mosquito WNV positivity

derivatives.

Model Overall MAE Overall RMSE Max RMSE Min RMSE

RFR 0.004442 0.006522 0.002433 1.378654e-06

BELR 0.004279 0.006451 0.002520 3.539568e-06

Table 8

Comparison of overall RMSEs for our RFR and BELR models and Lee et. al’s MLR and

ANN.

Model Overall RMSE Range of Desired Output

RFR for Mosquito Abundance Derivative 7.476696 98

BELR for Mosquito Abundance Derivative 6.696209 98

RFR for Mosquito WNV Positivity 0.006522 0.0435

BELR for Mosquito WNV Positivity 0.006451 0.0435

MLR for Mosquito Abundance 17.53 78

ANN for Mosquito Abundance 14.38 78
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Figure 1

Map of Enhanced Vegetation Index for Chicago and Surrounding Area from August 2018.
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Figure 2

GLOBE MHM points and City of Chicago points in relation to Chicago boundaries.

Figure 3

Mosquito Abundance in Chicago Over Time.
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Figure 4

Derivatives For Mosquito Abundance in Chicago Over Time .

Figure 5

Percent of Mosquitoes Tested for West Nile Virus Per Trap in Chicago Over Time.

Figure 6

Derivatives for Percent of Mosquitoes Tested for West Nile Virus Per Trap in Chicago Over

Time.
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Figure 7

Left: Time series of mosquito abundance in Chicago for 2009. Middle: Missing data points

filled with the Most Frequent method. Right: Missing data points filled with the Median

method.



PREDICTING WEST NILE VIRUS POSITIVITY RATES AND ABUNDANCE 33

Figure 8

Left: Time series of West Nile Virus positivity rates in Chicago for 2012. Middle: Missing

data points filled with the Most Frequent method. Right: Missing data points filled with the

Median method.
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Figure 9

Left: time series of Land Surface Temperature, Specific Humidity, and EVI for 2017 in the

City of Chicago. Right: adjustment of Land Surface Temperature, Specific Humidity, and

EVI based on a forward time shift of three weeks.
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Figure 10

Left: time series of total precipitation and West Nile positivity rates for 2015 in the City of

Chicago. Right: adjustment of total precipitation based on a forward time shift of three

weeks.
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Figure 11

Top: Feature importance for the RFR predicting the derivative of mosquito abundance at

each timestep. Bottom: Feature importance for the RFR predicting the derivative of

mosquito WNV positivity at each timestep.
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Figure 12

Top: Time series of observed values, predicted values, and root mean square error for

Random Forest Regressor’s performance on predicting mosquito abundance. Bottom:

Observed values and predicted values made less transparent to highlight root mean square

error.
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Figure 13

Top: Time series of observed values, predicted values, and root mean square error for

Random Forest Regressor’s performance on predicting mosquito West Nile Virus positivity

rate. Bottom: Observed values and predicted values made less transparent to highlight root

mean square error.
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Figure 14

Top: Time series of observed values, predicted values, and root mean square error for

Backward Elimination Linear Regressor’s performance on predicting mosquito abundance.

Bottom: Observed values and predicted values made less transparent to highlight root mean

square error.
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Figure 15

Top: Time series of observed values, predicted values, and root mean square error for

Backward Elimination Linear Reggresor’s performance on predicting mosquito West Nile

Virus positivity rate. Bottom: Observed values and predicted values made less transparent

to highlight root mean square error.
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