
Mapping Earth Systems for Local Sustainability Using Google Earth Engine, GLOBE 
Soil, and SMAP Data. 
 
Students (Grade 10 ): Anawach Anantachoke, Dilokpat Chaiwira, Sirawit Saengchote, 
Kantinan Lumsun, Pongwarin Twesre, Tianrawit Komalittipong, Jirapat Baithongsiri, 
Vasupint Krikieatisakul, Manatsakan Ariyapithak, Pornnutcha Khongton, Poonnama 
Surachutikarn, Nuttanit Karnwitee 
School: Samsenwittayalai School 
Teacher: Kornkamon Kumnerdkarn 
Email: kornkamon@samsenwit.ac.th 
Scientists: Assoc.Prof.Dr.Krisanadej Jaorensutasinee, Assoc.Prof.Dr. 
MullicaJaroensutasinee, Center of Excellence for Ecoinformatics, School of Science, 
Walailak University. Dr. Wacharapong Srisang, Faculty of Science and Agricultural 
Technology, Rajamangala University of Technology Lanna, Lampang, Thailand. 
 
Abstract 
This study explores the integration of satellite data, field measurements, and IoT sensors to 
create detailed soil moisture maps for agricultural and environmental applications. Using 
SMAP satellite data from NASA, field data collected by students through the GLOBE 
program, and IoT sensor data, the study demonstrates how these resources can be combined 
to produce reliable, accessible maps. The study focuses on Trang Province, Thailand, where 
field measurements were taken at two sites: a rubber plantation and a coastal sand beach. The 
research investigates two key questions: (1) How can SMAP, GLOBE, and IoT data be 
combined to create useful soil moisture maps for local farmers and communities? (2) How 
well do these maps match field-collected moisture data? Results show that satellite data from 
SMAP, when compared with field measurements, provide accurate estimates of soil moisture, 
with values of 35.0 ± 2.65% in the rubber plantation and 5.0 ± 0% on the beach. The study 
successfully developed an interactive soil moisture map with 35 layers accessible through 
Google Earth Engine (GEE), offering temporal and spatial data on soil moisture dynamics 
from 2016 to 2021. This tool empowers local stakeholders by providing actionable data for 
sustainable agriculture planning, water resource management, and climate change adaptation, 
while also contributing to the United Nations Sustainable Development Goals. The findings 
emphasize the value of combining remote sensing, citizen science, and technology for solving 
local sustainability challenges. 

 
Research Questions 

1. How can we use SMAP satellite data, GLOBE student measurements, and Google 
Earth Engine to produce soil moisture maps for Trang Province that help farmers and 
local communities? 

2. How well do our soil moisture maps match the soil moisture data collected by 
students and IoT sensors in Trang Province’s rubber plantations and coastal areas? 

 
Introduction 
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The world is experiencing profound environmental changes, including global 
warming, natural disasters, and escalating resource crises. Water and food scarcity have 
led to widespread famine in many regions, posing severe threats to international 
stability if left unmanaged. One critical factor in this crisis is soil moisture, which plays 
a vital role in agriculture, water management, and climate regulation. Understanding 
soil moisture dynamics enables accurate predictions of droughts, floods, and 
agricultural yields, directly supporting the United Nations Sustainable Development 
Goals (SDGs), particularly those related to zero hunger, clean water, and climate 
action. Remote sensing technologies, such as NASA’s Soil Moisture Active Passive 
(SMAP) satellite, provide essential global tools for monitoring soil moisture, advancing 
efforts to achieve these critical objectives. 

The GLOBE (Global Learning and Observations to Benefit the Environment) 
project offers students worldwide the opportunity to participate in hands-on science by 
collecting real-world soil moisture data and comparing it with satellite observations. 
This initiative fosters a deeper understanding of Earth's natural processes while 
connecting local environmental measurements to global datasets. NASA’s SMAP 
satellite, launched in 2015, measures soil moisture in near real-time, updating every 
three hours (Entekhabi et al., 2010). These high-resolution data support agricultural 
planning, water resource management, and disaster prediction efforts, particularly for 
droughts and floods (Colliander et al., 2017). 

Google Earth Engine, a cloud-based platform for geospatial analysis, integrates 
SMAP data into its public database, enabling researchers to process large datasets efficiently 
without extensive computational resources (Gorelick et al., 2017). By combining SMAP data 
with GEE’s analytical tools, soil moisture maps can be generated to monitor temporal 
changes, aiding decision-making in water management and agriculture, especially in areas 
prone to droughts or flooding (Mutanga & Kumar, 2019). 

Trang Province, located in southern Thailand within Southeast Asia, is the focus of 
this study due to its diverse topography, which includes coastal plains, plateaus, and 
mountains. This region is ideal for examining soil moisture variations across different 
landscapes. Known for its agricultural production—such as rice, rubber, and oil 
palm—Trang’s economy relies heavily on soil and water conditions (Phongpaichit & Baker, 
2015). Additionally, its coastal areas feature mangrove forests that help prevent erosion, 
highlighting the interplay between natural and agricultural ecosystems (Kathiresan & 
Bingham, 2001). This diverse environment and varied soil types provide an excellent 
opportunity to study soil moisture in ecological and economic contexts. 

This research focuses on integrating SMAP satellite data with Google Earth Engine 
(GEE) to create soil moisture maps at the community level. These maps serve as vital tools 
for future planning and management of local resources, particularly in agriculture and water 
management in regions covered by SMAP’s data. SMAP employs an L-band radar and 
radiometer to measure soil moisture, penetrating clouds, and moderate vegetation with a 
resolution of up to 9 kilometers, making it highly accurate for local and global studies 



(Entekhabi et al., 2014). Such capabilities support climate research, drought forecasting, and 
sustainable water management (McColl et al., 2017). 

This study utilizes SMAP (Soil Moisture Active Passive) satellite data and Google 
Earth Engine (GEE) to create a soil moisture map of Trang Province, delivering valuable 
insights into soil and water conditions for stakeholders, including government agencies, 
farmers, and local communities. These insights facilitate agricultural planning, water resource 
management, and natural resource conservation, promoting local sustainability. The research 
combines multiple data sources: field data gathered manually by students using the Soil 
moisture SMAP block pattern protocol (GLOBE, 2018), real-time measurements collected 
via IoT-based sensors, and satellite-derived SMAP data processed through Google Earth 
Engine. Combining student-collected manual data and IoT sensor data enhances and verifies 
satellite observations, ensuring the soil moisture maps are accurate and reliable. 

 

Materials and Methods 
 
Study site 
The study area lies within Trang Province, Thailand, in Southeast Asia, defined by 
geographic coordinates spanning 6.9493° N to 8.0984° N in latitude and 99.0547° E to 
100.1424° E in longitude. This region features a diverse landscape of coastal plains, 
agricultural lands, and mountainous terrain, making it well-suited for examining soil moisture 
and environmental characteristics. The tropical monsoon climate of Trang Province, 
characterized by high rainfall and distinct wet and dry seasons (Peel et al., 2007), influences 
soil moisture variability, providing an ideal setting to investigate water dynamics and their 
impact on agriculture and natural resources. These boundaries focus the analysis on this 
distinct portion of Trang Province. 

 



Figure 1. Study area in Trang Province, southeastern Thailand, Southeast Asia. 
 

Two distinct sites are investigated within this designated area, each representing different 
land use patterns. The first site, located at 7.58375° N, 99.59084° E, is a rubber plantation, an 
agricultural land use type. Soil moisture content at this site is presumed regulated by 
irrigation practices or precipitation patterns associated with rubber cultivation. The second 
site, found at 7.30919° N, 99.25888° E on Koh Kradan Island along the coastline, is 
influenced by marine proximity. Soil moisture in this coastal zone is likely modified by tidal 
fluctuations or the prevalence of sandy substrates. 

These sites exemplify distinct land use categories: agricultural plantations and coastal 
environments. The tropical monsoonal climate prevalent in Trang Province induces 
significant variability in soil moisture across these locations. Analyzing these sites facilitates 
a comprehensive understanding of the region's ecological and hydrological dynamics. 

 
Data Collection and Analysis 

Field Data Collection: We use the SMAP data collection protocol to collect the data. A 2-inch 
steel pipe is cut into sections 5 cm and sharpened to create a soil sampling cylinder. Strong 
equipment is required since some soils in Thailand are dense and clay-rich. According to the 
protocol, we use a wooden board as a base and drive the cylinder into the soil. Once the soil 
sample is collected, it is dried at 90°C before entering the data into the GLOBE Data Entry 
system. We measure data from 25 to 26 Feb 2025.  

IoT-Based Data Collection: The wireless Vantage Vue, a research-grade weather station, 
provides all the features utilized in our study. Equipped with sensors, it collects soil moisture 
and rainfall data at depths of 10, 30, 60, and 90 cm. The collected data are automatically 
transmitted to the cloud and accessible on the website https://www.weatherlink.com/, where 
we can instantly generate graphs and download the data for analysis. 

Data Sources: This study utilized SMAP (Soil Moisture Active Passive) satellite data from 
two primary platforms. The first source was the Google Earth Engine (GEE) Data Catalog 
(https://developers.google.com/earth-engine/datasets/catalog), which provided spatially 
continuous maps illustrating soil moisture distribution. The second source was AppEEARS 
(Application for Extracting and Exploring Analysis Ready Samples) 
(https://appeears.earthdatacloud.nasa.gov/), which facilitated the extraction of time-series soil 
moisture data, enabling an analysis of temporal variations. Two key SMAP datasets were 
selected: a) the NASA-USDA Enhanced SMAP Global Soil Moisture Dataset and b) the 
SPL4SMGP.007 SMAP L4 Global 3-Hourly 9-km Surface and Root Zone Soil 
MoistureDataset. These datasets provided high-resolution, three-hourly updated records of 
soil moisture at different depths, with surface moisture measured at 0-5 cm and root-zone 
moisture extending from 0-100 cm. This study used SMAP data to create maps that will be 
useful for the local community, which is the main objective of this research. 

https://www.weatherlink.com/
https://developers.google.com/earth-engine/datasets/catalog
https://appeears.earthdatacloud.nasa.gov/


Data Analysis Approach: This study applied two complementary methods for soil moisture 
analysis. The first method, Remote Sensing Data Retrieval, involved processing SMAP data 
using Google Earth Engine for spatial analysis and AppEEARS for time-series analysis. The 
second method, Field Measurements, incorporated direct soil moisture sampling at study sites 
using the GLOBE Soil Moisture Data Protocol, which follows standardized manual sampling 
techniques. Additionally, real-time soil moisture monitoring was conducted through 
IoT-based sensors using the Davis Air and Soil Weather Station. Field data were used to 
confirm and support the accuracy of the maps generated from SMAP data. By integrating 
satellite-derived data with ground-based measurements, this study aimed to validate SMAP 
observations, enhance soil moisture accuracy assessments, and provide a comprehensive 
understanding of soil moisture variability across different land use settings. 

 

Results 

Surface soil moisture data were collected from two study sites, a rubber tree plantation, and a 
sand beach, using field measurements following the GLOBE Protocol and SMAP satellite 
data. The analysis includes annual averages for 2024, February 2024 averages, long-term 
averages from 2020 to 2024, and February averages over the same period (see Table 1). 

For the rubber tree plantation, field measurements recorded a mean surface soil moisture of 
35.0 ± 2.65% (90% confidence interval: 30.5–39.0%). SMAP data for 2024 indicated an 
annual mean of 41.2 ± 7.29% (CI: 41.5–41.8%), while the February 2024 average was 40.5 ± 
1.61% (CI: 40.0–41.0%). The long-term SMAP dataset from 2020 to 2024 showed a mean of 
41.5 ± 6.46% (CI: 41.3–41.8%), with the February 2020–2024 average at 39.9 ± 4.43% (CI: 
39.3–40.5%) (see Fig 1, Fig 2). 

For the sand beach, field measurements recorded a mean surface soil moisture of 5.0 ± 0% 
(CI: 5–5%). SMAP data for 2024 showed an annual mean of 42.2 ± 6.70% (CI: 41.6–42.7%), 
while the February 2024 average was 40.1 ± 1.68% (CI: 39.6–40.6%). The long-term SMAP 
dataset from 2020 to 2024 recorded a mean of 40.4 ± 6.76% (CI: 40.1–40.6%), with the 
February 2020–2024 average at 37.6 ± 5.60% (CI: 36.9–38.4%) (see Table 1). 

  
 
 
Table 1: Surface Soil Moisture Statistics of Two Study Sites – Comparison of Field Data and 
SMAP Satellite Data (Mean  ± SD, with 90% confidence interval) 

 GLOBE 
protocol field 
Surface Soil 
Moisture 
(n=3) 

SMAP data 
2024 (n=366) 

SMAP data 
February 
2024 (n=29) 

SMAP data 
2020-2024 
(n=1827) 

SMAP data 
February 
2020-2024  
(n=142) 



Rubber  tree 
plantation 

35.0 ± 2.65 
(30.5 - 39.0)  

41.2 ±7.29 
(41.5-41.8) 

40.5±1.61 
(40.0-41.0) 

41.5±6.46 
(41.3-41.8) 

39.9±4.43 
(39.3-40.5) 

Sand beach 5± 0  
(5-5)  

42.2±6.70 
(41.6- 42.7) 

40.1±1.68 
(39.6-40.6) 

40.4±6.76 
(40.1-40.6) 

37.6±-5.60 
(36.9-38.4) 

 

 
Figure 2. Surface soil moisture data for Study Site 1 from 2020 to 2025, based on field 
measurements and SMAP satellite data obtained from the AppEEARS platform. 

 
Figure 3. The time series of surface soil moisture at Study Site 1, derived from SMAP 
satellite data and field measurements, shows seasonal and annual trends. 
 
 
The IoT sensor data indicates that during the collection period, rainfall caused fluctuations in 
soil moisture at the surface, while moisture levels in the root layer remained unchanged by 
the amount of rainfall, as shown in Figure 4. The maximum recorded rainfall was 6.8 mm in 
15 minutes. 



 
 
Figure 4. WeatherLink Cloud generated a graph using data from an IoT sensor, illustrating 
soil moisture levels and rainfall data. 
 
 
 
The results of generating SMAP data for Trang Province indicate that it is feasible to create a 
soil moisture map covering the entire province using JavaScript (Figure 5). The map, with a 
spatial resolution of 10 km per pixel, represents soil moisture distribution with a color scale 
that can be customized based on the study's design. A total of 35 map layers were produced, 
including a single layer representing the average soil moisture for the entire province over the 
period from 2016 to 2021, six layers depicting the annual average soil moisture for each year 
within this period, four layers illustrating the average soil moisture for each quarter over the 
six-year duration, and 24 layers representing the quarterly averages for each individual year. 
This dataset provides a comprehensive spatial and temporal analysis of soil moisture 
dynamics across Trang Province.Using Google Earth Engine (GEE) and the code we 
developed, we were able to transform the map into a user-friendly version through the 
Google Earth Engine App. This allows users to access and view the map directly in a web 
browser, without the need for any additional software installations (Figure 6). 
 
 
 



 
Figure 5. Soil moisture distribution map of Trang Province, generated using SMAP satellite 
data and Google Earth Engine (GEE), with coding capabilities offering opportunities to 
recreate similar maps for different regions in the future. 
 
 

 
Figure 6. Interactive map within the Google Earth Engine (GEE) application, enabling 
farmers and organizations to visualize and analyze real-time data, including soil moisture 
levels, land cover, and flood events, to support informed decision-making for environmental 
management, agricultural planning, and sustainable practices. 



 
Discussion 

Although the field data shows some variation from the average values (Table 1), the 
measured data still fall within a reasonable range when examined in the graphs (Figures 2 and 
3), confirming the reliability of the values from the SMAP data and the maps we created.The 
comparison between soil moisture data derived from the GLOBE Protocol and SMAP 
satellite measurements reveals notable discrepancies, primarily attributable to the coarse 9 km 
pixel resolution of the SMAP data (Entekhabi et al., 2010). This large pixel size integrates 
soil moisture values over expansive areas, potentially obscuring localized variations and 
compromising accuracy in regions with heterogeneous land cover. For instance, our study 
identified significant differences between measurements at Koh Kradan and the rubber 
plantation. These disparities may arise from the coastal area's diverse soil composition, 
including sandy soils and clay-rich mangrove forests (Soil Survey Staff, 2014). Field 
measurements in sandy soils yielded substantially lower values than SMAP averages, 
indicating that coastal zones with mixed soil types may be unsuitable for developing soil 
moisture algorithms, particularly for calibrating future satellite datasets (Chan et al., 2016). 

Analysis of Figure 2 reveals pronounced seasonal patterns in soil moisture, accompanied by 
irregular fluctuations. This seasonality underscores the potential of SMAP data as a valuable 
resource for climate change studies, facilitating the tracking of soil moisture trends and their 
responses to shifting weather patterns over time (Kerr et al., 2016). 

Google Earth Engine (GEE) proved more practical than the AppEEARS platform for map 
generation (Gorelick et al., 2017). GEE offers key benefits, including scalability, clear and 
interpretable visualizations, and straightforward graph generation capabilities comparable to 
AppEEARS. However, challenges include the learning curve required to master the platform 
and memory management issues during image processing. Without adequate programming 
expertise, these limitations can lead to system inefficiencies or freezes (Mutanga & Kumar, 
2019). 

In this study, we were unable to create a map using data from SPL4SMGP.007 SMAP due to 
its high level of detail, with data collected every 3 hours. When attempting to create a broad, 
long-term statistical map, the data's granularity exceeds the capabilities of Google Earth 
Engine. As a result, we had to rely on the NASA-USDA SMAP data, which is no longer 
being updated, limiting us to creating maps for past periods only. To address this issue, a 
more complex program would be required to overcome memory limitations and effectively 
process the detailed data. 

Our approach utilized simple, cost-effective coding tools to develop a scalable soil moisture 
map adaptable to other regions. The replicability of these findings highlights the synergy 
between earth science and engineering in addressing community challenges sustainably, 
providing a framework for future environmental monitoring and management initiatives 
(Jackson et al., 2019). 



Conclusion 

This study demonstrates the potential of utilizing satellite data and existing scientific 
resources without requiring large financial investments. It highlights the advantages of using 
new technology for environmental monitoring and decision-making. However, the study also 
stresses the continued importance of fieldwork for developing accurate data. By combining 
satellite data with field data collection, we can achieve reliable results that are beneficial to 
local communities and stakeholders. Even with advanced technology, it is essential to have 
individuals who deeply understand science to fully leverage these tools. Furthermore, 
fostering youth development through programs like GLOBE is crucial, as it equips them with 
both scientific and technological knowledge that will be invaluable for future advancements. 
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Claim for "I am a Data Scientist" Badge 

Our project highlights our data science skills by combining GLOBE soil data, SMAP satellite 
data, and Google Earth Engine (GEE) to create detailed maps for Trang Province. We 
meticulously collected and cleaned student-reported data (raw data available in the 
Appendix), applied linear regression and time series analysis, and visualized soil moisture 
trends using GEE graphs and tables. Our statistical analysis, presented in Table 1, identified 
patterns that aligned with published SMAP data, despite challenges such as discrepancies in 
sandy soil, which we addressed through field validation. This project contributes to local 
sustainability efforts and paves the way for future IoT integrations, making us proud to earn 
the "I am a Data Scientist" badge. 

 

 

Claim for "I AM A PROBLEM SOLVER" Badge 

We use innovative technologies that are both practical and easily replicable, helping to 
address global challenges. Our approach demonstrates how these solutions can be adapted 
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and implemented to solve real-world problems effectively, earning us the "I AM A 
PROBLEM SOLVER" badge. 

 

 

Claim for "I AM AN ENGINEER" Badge 

We developed an advanced system to monitor soil moisture in Trang Province. By designing 
and programming a solution using JavaScript in Google Earth Engine, our custom JavaScript 
code processed complex datasets and created a 35-layer mapping tool. We adapted sampling 
methods for dense soils to ensure precision and accuracy. This combination of technical 
design, programming, and systems thinking has provided valuable insights for agriculture and 
water management, showcasing our engineering skills and earning us the "I AM AN 
ENGINEER" badge. 

 

 

 

 
 
 

 



Google Earth Engine Code  
var roi = ee.FeatureCollection("FAO/GAUL_SIMPLIFIED_500m/2015/level1") 
            .filter(ee.Filter.eq('ADM1_NAME', 'Trang')); 
Map.addLayer(roi, {color: 'blue'}, "ROI: Trang"); 
Map.centerObject(roi); 
 
// 2. Define analysis time range: List of years and months 
var startYear = 2016; 
var endYear = 2021; 
var startMonth = 1; 
var endMonth = 3; 
 
//var years = ee.List.sequence(2009, 2017);  // from 2016 to 2021 
//var months = ee.List.sequence(1, 12);        // all 12 months 
 
// 3. Load SMAP Soil Moisture Data and select the 'ssm' band 
var coll = ee.ImageCollection('NASA_USDA/HSL/SMAP10KM_soil_moisture') 
              .select('ssm') 
              .filter(ee.Filter.calendarRange(startYear, endYear, 'year')) // Select only the years 
              .filter(ee.Filter.calendarRange(startMonth, endMonth, 'month')); 
print("SMAP Collection", coll); 
print("SMAP Collection size", coll.size()); 
 
// 4. Set visualization parameters for soil moisture 
var soilVis = { 
  min: 0.0, 
  max: 30.0, 
  palette: ['000000', '8B4513', 'FF8C00', 'FFFF00', '90EE90', '00FFFF'], 
}; 
 
// 5. Display the overall mean soil moisture layer (clipped to ROI) 
var soilMoistureMean = coll.mean().clip(roi); 
Map.addLayer(soilMoistureMean, soilVis, 'Soil Moisture Mean'); 
 
// 6. Add legend to the map 
var legend = ui.Panel({ 
  style: { 
    position: 'bottom-right', 
    padding: '8px 15px' 
  } 
}); 
 
var legendTitle = ui.Label({ 
  value: 'Soil Moisture (%)', 
  style: { 
    fontWeight: 'bold', 
    fontSize: '14px', 
    margin: '0 0 4px 0', 
    padding: '0' 



  } 
}); 
 
var legendColors = ['000000', '8B4513', 'FF8C00', 'FFFF00', '90EE90', '00FFFF']; 
var legendLabels = ['0', '6', '12', '18', '24', '30']; 
 
var legendPanel = ui.Panel({ 
  layout: ui.Panel.Layout.flow('vertical') 
}); 
 
for (var i = 0; i < legendColors.length; i++) { 
  var colorBox = ui.Label({ 
    style: { 
      backgroundColor: '#' + legendColors[i], 
      padding: '8px', 
      margin: '2px', 
      width: '20px' 
    } 
  }); 
  var label = ui.Label({ 
    value: legendLabels[i], 
    style: { margin: '2px 0 2px 6px' } 
  }); 
  var row = ui.Panel({ 
    widgets: [colorBox, label], 
    layout: ui.Panel.Layout.Flow('horizontal') 
  }); 
  legendPanel.add(row); 
} 
 
legend.add(legendTitle); 
legend.add(legendPanel); 
Map.add(legend); 
 
/* 7. Add month and year properties to each image in the collection 
var smap = coll.map(function(img) { 
  var d = ee.Date(img.get('system:time_start')); 
  var m = d.get('month'); 
  var y = d.get('year'); 
  return img.set({'month': m, 'year': y}); 
}); 
print("SMAP with date properties", smap); 
 
// 8. Generate a monthly average ImageCollection for each year 
var byYearMonth = ee.ImageCollection.fromImages( 
  years.map(function(y) { 
    return months.map(function(m) { 
      var monthlyImage = smap.filterMetadata('year', 'equals', y) 
                             .filterMetadata('month', 'equals', m) 



                             .select('ssm') 
                             .mean() 
                             .set('year', y) 
                             .set('month', m) 
                             .set('date', ee.Date.fromYMD(y, m, 1)); 
      return monthlyImage; 
    }); 
  }).flatten() 
); 
print("Monthly SMAP ImageCollection", byYearMonth.first()); 
 
// 9. Perform zonal statistics (mean) for the ROI for each monthly image 
var smapSummary = byYearMonth.map(function(img) { 
  var features = roi.map(function(f) { 
    return f.set({ 
      'date': img.get('date'), 
      'month': img.get('month'), 
      'year': img.get('year') 
    }); 
  }); 
  // Use the projection of the first image in byYearMonth 
  var proj = ee.Image(byYearMonth.first()).projection(); 
  return img.reduceRegions({ 
    collection: features, 
    reducer: ee.Reducer.mean(), 
    scale: 1000, 
    crs: proj 
  }); 
}).flatten(); 
print("Zonal Statistics Summary", smapSummary.limit(10)); 
 
// 10. Export the resulting table to Google Drive as a CSV file. 
var selectors = ['year', 'month', 'ADM1_NAME', 'mean']; 
Export.table.toDrive({ 
  collection: smapSummary, 
  description: 'SMAP_Timeseries_Trang', 
  folder: 'earth_engine_data', 
  fileNamePrefix: 'SMAP_Timeseries_Trang', 
  fileFormat: 'CSV', 
  selectors: selectors 
});*/ 
 
 

 

 


