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INTRODUCTION

METHODSABSTRACT CONCLUSIONS

Mosquito habitat and breeding ranges have increased globally. 
Mosquito habitat preferences are based on the interaction of several 
factors, including temperature, humidity, rainfall, elevation, and 
availability of hosts. Climate change has been identified as a key 
driving factor for the shifts in mosquito distribution over the past 70 
years and is likely to continue to be the chief determinant of mosquito 
population spread. According to current trends, climate change will 
lead to major shifts in meteorological variables and land cover 
distributions, including an increase in average temperature, rising 
ocean levels, and increased severity of storms and droughts.
Using artificial intelligence, predictions can be scaled to adaptable 
national or global mosquito models to identify nuanced relationships 
between atmospheric variables and mosquito abundance. In this 
investigation, we harness deep learning to develop a mosquito 
abundance model and conduct time series climate forecasting in order 
to predict where future infestations of mosquito larvae may occur in 
the United States.
Research Overview
1. Gather meteorological data and mosquito larvae counts from 

various locations in the United States to create a predictive model 
for mosquito larvae abundance. 

2. Extract time-series sequences of the said ecological variables from 
satellites for specific regions of interest, to allow for the 
forecasting of environmental conditions in these regions. 

3. Pass these environmental predictions into the predictive model 
developed in (1) to obtain quantitative measurements of mosquito 
larvae abundance and to identify future breeding regions for 
mosquitoes. 
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This investigation aims to predict the abundance of mosquito larvae 
across the United States in the year 2050. To achieve this purpose, a 
data set consisting of citizen-collected mosquito larvae counts and 
several accompanying atmospheric and spatio temporal variables is 
compiled. Then, atmospheric variables are analyzed to identify the 
conditions most suited to the habitation of mosquito larvae using a 
deep learning framework. Next, these variables are forecasted using 
an LSTM model to project future climatic conditions. Finally, these 
atmospheric projections are inputted back into the original deep 
learning model to obtain the desired predictions. 
The results from this experiment support the idea that mosquito 
spread is largely location and ecosystem-dependent, which points 
out the benefits of utilizing localized citizen-science observations 
and conducting regional examinations. One note of interest was that 
states along the Rocky Mountain Range, which contains some of the 
highest elevations around the country, were predicted to have the 
highest larvae abundance in 2050. This observation was further 
supported by the case study of Texas, which predicted the greatest 
change in larvae counts to occur in the high-altitude western region. 
These results clearly showed that the greatest shifts in mosquito 
larvae abundances will occur in high-altitude locales, which is most 
likely occurring since the increase in temperature is rendering 
high-altitude regions warm enough for mosquito habitation for the 
first time. Precipitation and proximity to large bodies of water, 
however, did not appear to have a generalized correlation with 
larvae abundance, yielding varying larvae counts across the US. It is 
likely that unusually large larvae count observations in regions 
along the coastline were due to the presence of high population 
densities and levels of urbanization rather than due to the coastal 
location itself. 
These findings point to the need for increased resource allocation to 
high-elevation areas to contain mosquito spread and vector-borne 
diseases since these locations are forecasted to become high-risk 
targets in the future. In addition, because there is only a meager 
presence of mosquitoes in high-altitude regions today, the 
awareness and containment protocols in these areas regarding 
mosquitoes are likely lacking, which may lead to greater future 
consequences if no actions are taken.

Mosquito habitat ranges have expanded globally due to climate change, introducing 
mosquitoes to new ecosystems and altering their prevalence in existing locales. The 
objective of this investigation is to analyze the preferred ecological conditions of 
mosquito larvae and forecast these environmental factors to predict likely future 
mosquito habitats. Publicly accessible atmospheric records and citizen-science 
mosquito larvae observations are used to compile a data set that includes ecological 
features of interest, such as temperature, precipitation, and elevation. The target 
variable is mosquito larvae abundance, as identifying these counts allows for 
effective prevention of potential outbreaks before infestation. A deep neural network 
consisting of six dense layers is trained on the data set to predict larvae counts from 
ecological inputs, with the oldest records set aside as test data for validation by 
backcasting. Subsequently, climate forecasting is conducted for each state in the 
contiguous US. Long Short-Term Memory networks are employed to forecast 
temperature and precipitation until the year 2050. These climate projections are then 
fed back into the deep learning model to generate mosquito larvae abundance 
predictions. Our model projects that by 2050, mountainous locales will contain 
elevated levels of mosquito larvae, more so than coastal and prairie regions. These 
results motivated a regional analysis of Texas due to the state’s high ecological and 
climatological diversity and its steep elevation gradient. The model projects that 
between 2030 and 2050, mosquito abundance will increase at the fastest rate in 
high-altitude western Texas. This proves that high-altitude ecosystems will become 
better suited for mosquito breeding in the future as temperatures rise. The results of 
this investigation support our hypotheses of regional ecosystem-driven changes in 
mosquito distribution, allowing for proper prevention of mosquito outbreaks and 
containment of vector-borne disease transmission.

Data Collection
Sources: 
● GLOBE Mosquito Habitat Mapper
● Weather Underground and Weather UX
Features:
● Average Daily Mean Temperature
● Average Daily Maximum Temperature
● Average Daily Minimum Temperature
● Monthly Days of Precipitation
● Average Daily Precipitation Amount
● Elevation
● Larvae Count (Target Variable)
Preprocessing:
● Filtering out artificial larvae observations
● Z score standardization 
● Log10 transformation of larvae counts

2. Climate Forecasting
A Long Short-Term Memory network (see 
below) was trained on the historical 
temperature and precipitation sequences to 
conduct climate forecasting on selected 
regions of interest. 
Architecture:
● 32 LSTM units
● Dense layer with 10 output nodes
Specifications:
● Lookback sequence: 20 years
● Prediction sequence: 10 years
● Same optimizer/initializer as Mosquito 

Larvae Abundance Model

1.  Mosquito Larvae Abundance Model
A deep neural network was assembled for the 
prediction of mosquito larvae count (see below). 
Architecture:
● 6 dense layers, each with 64 hidden nodes
● ReLU activation function
● Dropout regularization (20%)
Specifications:
● Adam optimization, Xavier initialization
● Mini-batch size = 8
Thirty-five of the oldest data examples were withheld 
as validation data to gauge whether the model could 
backcast previous mosquito larvae counts from 
historical ecological data. 

m ← number of locations,
l ← length of lookback sequence
p ← length of prediction sequence
t ← number of future sequences 

Train Val

R 0.888 0.489

P 1.26E-45 1.44E-3

Deep Neural Network Architecture LSTM Architecture

Research Overview

1. Mosquito Larvae Abundance Model 
The deep neural network was able to understand the intricacies of the training 
data but fell short when it came to generalization to unseen data. Though a 
moderate positive correlation existed between predicted larvae counts and 
ground-truth larvae counts on validation data, there were numerous instances of 
large negative residuals between these value, meaning the model tended to 
liberally flag locations as containing high mosquito abundances, when in truth 
they were of less concern. 

RESULTS AND INTERPRETATION

2. Climate Forecasting
Prior to using a Long Short-Term Memory network (LSTM) for time series 
forecasting, it was discovered that the trends in temperature and precipitation 
somewhat conformed to a pattern resembling the following periodic function, 
where T is the target atmospheric variable given the year t since the initial year t0.

The approximate parameters that can be used to estimate the trends are as follows:

It was also discovered that minimum and maximum temperature shared a high 
correlation with mean temperature. In particular, 

where kmin is a constant of adjustment between the minimum and mean 
temperature and kmax is a constant of adjustment between the maximum and mean 
temperature. Hence, the climate forecasting task for minimum and maximum 
temperatures was simplified into the following problem: Find k such that 

is minimized, where T(ti) is the temperature predicted using the corresponding 
function above and Si is the true temperature.

f: x → y ← trained LSTM model
X ← {[X11…X1l], [X21…X2l],…[Xm1…Xml]}
Y ← output array

Notation for Climate 
Forecasting

Larvae Abundance by State in 2050

Texas Meteorological and Larvae Abundance Changes (2030-2050)

Our results show that by 2050, the US 
Mountain states will be likely locations 
of mosquito breeding. Namely, 
Colorado, Utah, Wyoming, and New 
Mexico will contain high larvae counts 
than neighboring Pacific Coastal states 
to the west as well as neighboring 
Great Plains states to the east. 

Future Mosquito Habitat Identification

These projections align with previous research findings that changing weather 
variability could shift mosquito species into higher elevations. Due to this 
observation, the state of Texas was selected for further analysis at the regional 
level, as Texas contains a steep longitudinal elevation gradient, ranging from the 
Rockies to the Gulf of Mexico coast. Climate forecasting was conducted for each 
of Texas's ten climate divisions. 

Between 2030 and 2050, the highest increase in larvae abundance will occur in 
the high-altitude western divisions of Trans Pecos and High Plains. Precipitation 
is projected to increase more so in the eastern portion of the state compared to the 
southern and western portions. The opposite trend was observed for mean 
temperature. In fact, western Texas was projected to experience the highest rate 
of temperature increase. The likely relationship between these factors is that 
warmer temperatures in western Texas will intensify and prolong drought 
conditions, stalling precipitation over the next few decades, creating conditions 
more favorable for mosquito habitation. 
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