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  Abstract - In recent years, mosquito-borne 

diseases such as the Zika virus, West Nile virus, 

Chikungunya virus, Dengue, and Malaria have 

become more prevalent in urban areas due to 

various climate and anthropogenic factors. This 

led to a greater need for mosquito abundance 

prediction to improve the response to disease 

outbreaks, especially during the summer when 

mosquito season peaks and outdoor activities 

increase significantly. The objective of this study 

was to evaluate the accuracy of six machine 

learning models for classifying extreme mosquito 

abundance events based on climate data. Data 

sourced from the Mosquito Habitat Mappers 

challenge on GLOBE and a City of Chicago 

dataset were matched to area-averaged time-

series climate data for Chicago from GIOVANNI, 

a NASA open access remote sensing database for 

Earth science. Data was cleaned and then 

aggregated to a single weekly time-series dataset 

consisting of mosquito abundance, and the past 

week’s three climate variable averages. The 

models were trained and tested on climate data, 

namely surface humidity, precipitation, and 

daytime temperature. The mosquito and climate 

data were recorded from five Chicago summers. 

The results indicated that the best models for 

predicting mosquito abundance events were the 

ensemble learning methods of AdaBoost and 

Random Forest, respectively. Future avenues of 

research include using other, more-specific 

factors for prediction such as the chlorophyll 

from algal blooms (increasingly common due to 

direct and indirect anthropic activities, such as 

fertilizer runoff and warming waters due to 

climate change), more localized predictions, 

accounting for the microclimates of urban areas, 

and using regression models to predict precise 

mosquito numbers. 
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I.    INTRODUCTION 

 

Mosquito-borne diseases account for over 17% of all 

infectious diseases and cause more than 700,000 

annual deaths according to (World Health 

Organization [WHO], 2020). As noted in (Petersen 

et al., 2019), in recent years, cases of vector-borne 

diseases in the United States have rapidly increased 

along with sporadic outbreaks of domestic and 

invasive mosquito-borne diseases. (Petersen et al., 

2019) also notes that proven and scalable public 

health control measures do not exist and measures 

that do may not be effective, timely, or occur at all. 

In fact, (National Association of County & City 

Health Officials [NACCHO], 2017) found in a 

survey that 84% of surveyed vector-control 

operations are lacking in at least one out of the five 

core competencies of vector-control. More 
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specifically, urban areas are at a higher risk of 

mosquito-borne disease outbreak and experience 

very high transmission rates as shown in (Thang et 

al., 2019). Chicago is one city that experiences 

mosquito-borne diseases, particularly the West Nile 

Virus. Instances such as the Chicago West Nile Virus 

outbreak of 2002 as well regular cases of the virus 

occur in the City of Chicago. The virus affects the 

urban and suburban areas of Chicago and is a very 

serious illness. The prevalence of the West Nile 

Virus has been shown in (Tedesco et al., 2010). The 

West Nile Virus has no specific treatment or vaccine 

according to (Center for Disease Control [CDC], 

2021). Summer is the optimal time for the highest 

mosquito frequency rates due to warm weather 

posing favorable conditions for mosquito 

reproduction and habitat creation. Compared to the 

numbers year-round, these sudden outbreaks can be 

difficult to control mosquito-borne diseases. It is also 

understood that these population peaks are 

influenced by climate and overall weather 

conditions, so along with many other studies, this 

study aims to predict their magnitude to avoid 

surprises to the city’s health infrastructure. The 

influence of temperature was shown to be significant 

and mostly positive, augmenting growth rates of 

populations (Paz, 2008): warming of the mosquito 

environment boosted their rates of reproduction and 

number of blood meals, prolonged their breeding 

season, excluding the case of extreme temperatures 

exceeding mosquitos’ survivability limits (Drakou et 

al., 2020). In this factor trifecta, rainfall had the least 

predictable relationship (but still has a correlation) 

with mosquito presence, as various studies have 

analyzed its influence and found that for each habitat 

and mosquito-specific situation, there were different 

lag times in between higher and lower precipitation 

periods along with increased or decreased mosquito 

numbers. Unlike rainfall, relative humidity plays a 

more general role. For instance, mosquitoes become 

inactive to maintain body fluids and reduce energy 

use in low humidity environments. As a result of the 

insufficient treatment methods and prevalence of 

mosquito-borne disease outbreak in urban areas, a 

method of predicting mosquito abundance is vital to 

preventing the spread of disease. Predicting 

mosquito abundance can help increase the efficacy 

of response efforts to a mosquito abundance event. 

Since correlations have been found in past research 

between climate variables and mosquito abundance, 

considering climate variables such as humidity, 

temperature, and precipitation can be used to predict 

mosquito abundance. Much of recent research in this 

area has applied machine learning to this task 

because some machine learning algorithms, 

particularly supervised machine learning algorithms, 

are efficient at modeling relationships between 

features, such as climate variables, and targets, such 

as abundance classifications. Many past studies have 

utilized machine learning to prevent the spread of 

deadly infectious diseases such as COVID-19. 

(Alfred & Obit, 2021) is an example of one such 

study which overviewed the use of machine learning 

in disease prevention. However, most past studies 

that utilized machine learning for disease prevention 

utilized only the Neural Network and Support Vector 

Machine (SVM) machine learning models according 

to (Schaefer et al., 2020). Machine learning has also 

been used to predict mosquito abundance based on 

socioeconomic and land cover data such as that of 

(Chen et al., 2019). Many of these machine learning 

studies have found moderate to high success rates in 

predicting diseases and mosquito abundance. This 

study aims to implement and compare the 

performance of six different machine learning 

classifiers (Random Forest, Neural Network, Naïve 

Bayes, Support Vector Machine, AdaBoost, and k-

Nearest Neighbor) in predicting mosquito abundance 

based on three remote sensing climate variables 

(temperature, humidity, and precipitation) in the City 

of Chicago. The City of Chicago was chosen due to 

the availability of GLOBE citizen science data, 
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governmental mosquito data, and remote sensing 

climate data. In addition, Chicago has a high 

population density, is an urban area, and has 

ecological variability. The research questions 

answered by this study are: “Can supervised machine 

learning models be used to predict mosquito 

abundance in Chicago based on the remote sensing 

climate variables of temperature, humidity, and 

precipitation?” and “If so, which machine learning 

model will perform the best?”. We (the authors) 

hypothesized that mosquito abundance could be 

predicted by machine learning models based on 

remote sensing climate data and that the AdaBoost 

model would perform the best due to its boosting 

nature and its low generalization error as stated in ref. 

    

II.   RESEARCH METHODS 

 

There were four main stages to this research process: 

data acquisition, data preparation, machine learning, 

and evaluation. Data acquisition involved retrieving 

mosquito abundance data and climate data. Data 

preparation organized the data into a single, uniform 

time series comma-separated values file that could be 

analyzed. The machine learning process utilized six 

different models to predict a mosquito bloom event 

(defined as greater than 1386.743 mosquitos). The 

evaluation processes used standard machine learning 

evaluation metrics to compare the performance of the 

models. 

 

A.    Data Acquisition 

The mosquito abundance data was sourced from 

sample sizes of regular observations of mosquito 

traps in the City of Chicago’s Data Portal as well as 

GLOBE Observer Mosquito Habitat Mapper 

observations in the Chicago area during the summer 

months from 2017 to 2021. The climate variables 

selected in this experiment were the average daily 

surface relative humidity (SRH) as shown below in 

Figure 1 

, 

Fig. 1. Chicago area-averaged time-series of the average 

surface relative humidity from the beginning of 2017 summer 

to the end of 2021 summer. Graph created by authors; data 

retrieved from GIOVANNI, (AIRS Science Team & Teixeira, 

2013). 

 

 the average daily daytime surface air temperature 

(SAT) as shown below in Figure 2 

 

, 
Fig. 2. Chicago area-averaged time-series of the average 

surface air temperature from the beginning of 2017 summer to 

the end of 2021 summer. Graph created by authors; data 

retrieved from GIOVANNI, (AIRS Science Team & Teixeira, 

2013). 

 

and the daily precipitation as shown on the next page 

in Figure 3 
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. 

Fig. 3. Chicago area-averaged time-series of the daily 

precipitation from the beginning of 2017 summer to the end of 

2021 summer. Graph created by authors; data retrieved from 

GIOVANNI, (Huffman et al., 2019). 

 

These variables were chosen because mosquitos’ 

abundance is based on their toleration of conditions 

such as humidity, precipitation, and temperature. The 

rapid change of these factors in Chicago provide a 

good base for machine learning to make predictions 

of mosquito outbreaks. Climate data was retrieved 

from NASA’s Geospatial Interactive Online 

Visualization and Analysis Infrastructure 

(GIOVANNI), a web-based tool for visualizing, 

analyzing, and accessing Earth science remote 

sensing data. Each parameter was area-averaged for 

the Chicago area (Bounding Box Coordinates:  

-87.9110W, 41.60581N, -87.4606W, 42.0417N) 

 

 
 

Fig. 4. Bounding box of Chicago used for mosquito habitats 

and area-averaged remote sensing climate data as shown in the 

GIOVANNI interface, (“Giovanni”). 

 

and downloaded as a time-series onto a comma-

separated values (CSV) file. SRH and SAT data were 

sourced from the Atmospheric Infrared Sounder 

(AIRS) on NASA’s Aqua satellite. The precipitation 

data was obtained from an international network of 

satellites that provide global observations of 

precipitation called the Global Precipitation 

Measurement (GPM). 

 

B.    Data Preparation 

Regular mosquito traps reportings from the GLOBE 

Mosquito Habitat Mappers database as well as the 

City of Chicago data portal (which includes 

mosquito trap numbers from a dataset tracking the 

West Nile Virus) were aggregated into a single 

weekly time-series dataset of the mosquito count in 

each of the five Chicago summers from 2017 to 

2021. The City of Chicago mosquito observations 

can be seen below in Figure 5. 

 

 
 

Fig. 5. City of Chicago Data Portal of mosquito observation 

locations for the five Chicago summers from 2017 to 2021, 

(City of Chicago, 2022). 

 

The GLOBE Mosquito Habitat protocol data 

availability is shown on the next page in Figure 6. 
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Fig. 6. GLOBE Data Visualization of the Mosquito Habitat 

protocol locations for the five Chicago summers from 2017 to 

2021, (“GLOBE Program”). 

 

From the GLOBE Data, we utilized the location 

(ensuring it was in Chicago), the date, the location 

type (only using regular traps), and the mosquito 

count as shown in Figure 7 below. 

 

 
 

Fig. 7. GLOBE Observer Mosquito Habitat Mapper Data 

Entry screenshots. These three images include the data that we 

used from the GLOBE Mosquito Habitat Mapper protocol to 

create our mosquito count dataset, (“GLOBE Program”)  

 

Climate data from GIOVANNI was downloaded for 

the same period as the mosquito data and matched 

with each other. Since the data was daily, it was 

averaged on a weekly basis according to dates of 

mosquito observance in the mosquito dataset. There 

were null and missing values in the climate data, so 

the AVERAGEIF() function was used to skip days 

with no clean data. Next, the mosquito data was 

matched to the preceding week’s climate averages 

for each of the three factors. Finally, a new column 

was added to the data, a Boolean true or false: 

according to whether the mosquito number was 

above (true) or below (false) the average mosquito 

frequency of 1386.743 excluding outliers, assuming 

mosquito frequency was a Poisson distribution (a 

type of distribution regularly used for time-series 

data as described in (Heinen, 2003)).  

 

C.    Machine Learning 

The final CSV file from the data preparation process 

was uploaded into the Orange Data Mining software 

(Demsar et al., 2013), an open-source machine 

learning and data visualization toolbox. The data 

were then split into a training category comprised of 

seventy percent of the data and a testing category 

comprised of the remaining thirty percent of the data. 

The data was then put through the machine learning 

pipeline for six different models and evaluated under 

different measures of effectiveness. Using the pre-

processing feature of Orange, the data were 

normalized using the following equation: 

 

. 

 

Fig. 8. Normalization equation. Image generated using 

(Codecogs). 

 

Because the input dataset is composed of features of 

different units, ranges, magnitudes, and properties, 

normalization is a vital step to ensure maximum 

efficiency for algorithms that are sensitive to 

differences and make predictions based on 

differences between data points. 
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C (i).    Random Forest 

  The Random Forest classifier is a supervised 

machine learning algorithm consisting of a “forest” 

of decision trees. A decision tree is comprised of 

nodes where “decisions” are made based on certain 

features of the input data. A random forest contains 

a large group of independent decision trees which 

make independent decisions on the classification of 

an instance based on the input data. The independent 

decision trees have different nodes and make 

differing decisions at nodes to output different 

classifications. The classification that is made most 

often becomes the random forest’s “final decision”. 

The key to this algorithm is the low correlation 

between the decision trees, which helps mitigate 

errors that a specific decision tree may be prone to. 

(Yiu, 2021) 

 

C (ii).    Neural Network 

The Neural Network classifier used in this study was 

a multi-layer perceptron neural network. The input 

layer in this study consisted of three nodes, through 

which the three climate variables were input. The 

input signals feedforward through the network 

comprised of nodes or “neurons”. In each layer of the 

neural network, the value of a node is multiplied by 

the weight of the connection to the node in the next 

layer which is added to a bias value and passed 

through an activation function. Activation functions 

are used to prevent linearity and transform the input 

to do more complex tasks. The neural network in this 

study used the rectified linear unit (ReLu) activation 

function. Additionally, the model used adaptive 

learning rate optimization (Adam). This optimizer 

decreases computation time and requires fewer 

parameters for tuning. The network eventually 

converges to an output layer of two nodes: one with 

a classification of mosquito abundance event, and 

one with the classification of no mosquito abundance 

event. The model is then re-run and neurons are 

adjusted to increase the classification accuracy of the 

final output. (Hardesty, 2017) 

 

C (iii).    Naïve Bayes 

  The Naive Bayes classifier is a probabilistic 

machine learning model that is used for 

classification. The classifier is modeled on the Bayes 

theorem: 

. 

 

Fig. 9. Bayes theorem. Image generated using (Codecogs). 

 

The model is considered “naive” because it assumes 

that each input variable is independent. This is 

unrealistic for real-life data; however, the technique 

can be very effective on a large range of computing 

problems. The Bayes theorem is used to calculate the 

membership probability for an instance based on the 

features for each classification. The classification 

with the highest probability is the classification 

output by the classifier. (Gandhi, 2018) 

 

C (iv).    Support Vector Machine (SVM) 

The Support Vector Machine (SVM) classifier 

observes each instance (in our study each date of 

mosquito recording) in an n-dimensional space, 

where n is the number of features in the dataset. 

Since the dataset in this study includes three climate 

variables, the classifier works in a three-dimensional 

space, although values of n that are more than three 

can exist. The data are first passed through a linear 

kernel function that converts the data into a separable 

format that will fit in the three-dimensional space. 

The classifier works to find the optimal hyperplane 

based on the number of output classifications. Since 

this study focuses on a binary classification, the 

hyper-plane is a one-dimensional line. This plane 

maximizes the distance between the data points that 

are known to be in separate classes. Thus, when a 
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testing data point is introduced, its location in the 

three-dimensional plane relative to the hyperplane 

determines the classification that is output by the 

SVM classifier. The data points closest to the 

hyperplane are called support vectors and play an 

important role in determine the orientation and 

position of the hyperplane. (Yadav, 2018). 

 

C (v).    k-Nearest Neighbors (k-NN) 

The k-Nearest Neighbors classifier acts in a similar 

fashion to the SVM classifier. The classifier also 

attempts to segregate the data points in a 

multidimensional space. The k-NN algorithm 

assumes that objects of the same class will be near 

one another. Thus, the algorithm computes the 

distance between a new given point and the distance 

between each of the other points in the dataset using 

the formula 

 

 
 

Fig. 10. k-NN standard Euclidean distance formula. Image 

generated using (Codecogs). 

 

where n is the number of variables The k-nearest 

data points will be considered by the algorithm. The 

classification of the new data point by the algorithm 

is the same classification of most of the neighboring 

points. A k-value of ten was used in this study as it 

was determined to be experimentally optimal for 

out dataset. (Kumar, 2021). 

 

C (vi).    AdaBoost 

The AdaBoost classifier is a boosting technique that 

is used as an Ensemble learning method. AdaBoost 

builds on top of another classifier, in the case of this 

study: the Random Forest classifier. The algorithm 

utilizes multiple weak classifiers to build a single 

strong classifier. Weak classifiers are classifiers that 

perform better than random guessing, but still poor 

in general. This study utilized decision stumps, 

which are like the decision trees of a Random Forest 

but are not fully grown containing only one node and 

two leaves. Although these stumps are not a good 

way to make decisions on their own, using AdaBoost 

over the stumps can lead to a more accurate 

classifier. As per the process, initially the decision 

stumps are used for each variable to see how well 

each stump classifies sample to their correct target 

class. More weight is assigned to the incorrectly 

classified samples, so they are classified correctly by 

the next decision stump. Each classifier also receives 

a weight with higher weights being assigned for more 

accurate classifiers. This process is iterated until all 

the training data is classified correctly or the 

maximum iteration level has been reached. (Freund 

& Schapire, 1996). 

 

D.    Evaluation 

Each of the models was evaluated under five 

standard machine learning classification metrics: 

Area under the receiver operating characteristic 

(ROC) curve (AUC), classification accuracy, 

harmonic mean between precision and recall (F1), 

precision, and recall (“Classification”, 2022). All 

these metrics are based on the notion of a confusion 

matrix: 

 

. 

 

Fig. 11. Confusion matrix. Image generated using (Codecogs). 

 

True positives (TP) occur when the model predicts a 

mosquito abundance event for the week a mosquito 
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abundance event occurred. False positives (FP) 

occurred when the model predicts a mosquito 

abundance event for a week when a mosquito 

abundance event does not occur. False negatives 

(FN) occur when the model predicts no mosquito 

abundance event for a week where a mosquito 

abundance event occurred. True negatives (TN) 

occur when the model predicts no mosquito 

abundance event for a week where no mosquito 

abundance event occurred. The first letter (T or F) 

describes the correct or incorrect classification of the 

model, and the second letter (P or N) describes the 

actual classification. Thus, the TP and TN are correct 

classifications. These four values were then used to 

calculate the five-evaluation metrics. The  

 

D (i).    Area Under ROC Curve (AUC) 

The AUC is used to measure the ability of each of the 

classifiers to distinguish between classes and is used 

as a summary score for the ROC curve. The ROC 

curve shows the performance of a classifier at 

different classification thresholds plotting the true 

positive rate (TPR) or recall: 

 

 
 

Fig. 12. True positive rate. Image generated using (Codecogs). 

 

on the y-axis and the false positive rate (FPR): 

 

 
 

Fig. 13. False positive rate. Image generated using 

(Codecogs). 

 

on the x-axis. Lowering the classification threshold 

classifies more positives so both the TPR and FPR 

increase. The area under the curve is found using 

integration to provide an aggregate measure of 

performance across every classification threshold. 

The closer to one the AUC score is, the better the 

model’s performance. 

 

D (ii).    Classification Accuracy (CA) 

Classification accuracy is considered the raw 

accuracy of a model. It is simply the percent of 

classifications that the model got correct and is 

calculated with the following formula: 

 

. 

 

Fig. 14. Classification accuracy formula. Image generated 

using (Codecogs). 

 

D (iii).    Precision 

Precision is used to measure what proportion of 

positive identifications were correct. The higher the 

precision (and thus closer to 1), the more effective 

the classifier. The formula used to calculate 

precision is 

. 
 

Fig. 15. Precision formula. Image generated using (Codecogs). 

 

D (iii).    Recall 

Recall is used to measure what proportion of the 

positives were identified correctly. The higher the 

recall (and thus closer to 1), the more effective the 

classifier. The formula used to calculate recall is 

 

. 

 

Fig. 16. Recall formula. Image generated using (Codecogs). 
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D (iv).   F1 Score 

The F1 score is the harmonic mean between 

precision and recall. The metric is a supposed 

improvement on the two simpler performance 

metrics of precision and recall. The F1 gives equal 

weight to precision and recall. Thus, a higher F1 

score would indicate a higher performing classifier. 

The F1 score is calculated using the following 

formula: 

. 

 

Fig. 17. F1 score formula. Image generated using (Codecogs). 

 

III.   RESULTS 

 

Classification Metrics 

Model AUC  CA Precision Recall F1 

Random Forest 0.988 0.944 0.945 0.944 0.944 

Neural Network 0.871 0.748 0.748 0.748 0.748 

Naïve Bayes 0.920 0.868 0.854 0.856 0.855 

SVM 0.885 0.772 0.771 0.772 0.771 

k-NN 0.822 0.748 0.746 0.748 0.747 

AdaBoost 0.996 0.973 0.963 0.962 0.962 

 

Table. 1. Comparison of the performance off six different 

classification machine learning models described in II-C, as 

measured by the five classification metrics as described in II-D. 

The highest performing models are AdaBoost, followed closely 

by Random Forest. 

 

 
Fig. 18. Comparison of the six machine learning models under 

the five classification metrics in the form of a bar graph. 

IV.   DISCUSSION 

 

All six models performed well with classification 

accuracies above 75%. This finding is likely due to 

the high quality and large datasets on mosquito 

counts and climate variables in the Chicago area. 

These results show that there is a high correlation 

between daily dynamic climate variables and 

mosquito abundance. Algorithms that performed the 

best were the ensemble learning algorithms of the 

Random Forest classifier (with a classification 

accuracy of 94.4%) and the AdaBoost classifier (with 

a classification accuracy of 99.6%), which built on 

top of the Random Forest classifier (see II-C(vi)). 

The high performance of these two algorithms can be 

explained by the algorithms’ ability to consider the 

most important attributes of the climate variables and 

the massive number of iterations and decision trees 

used to derive a classification. In addition, AdaBoost 

is known to have low generalization error, which 

means that the algorithm is much less prone to 

overfitting and performs better classification on 

previously unseen (testing) data. This phenomenon 

was noted in (Vezhnevets & Vezhnevets, 2005). The 

Random Forest classifier may have also performed 

well because of its ability to balance data when the 

amount of data in one class outnumbers the amount 

of data in another class, as it it did in this study. This 

feature of the Random Forest algorithm is widely 

known and is stated in (More & Rana, 2017). 

Furthermore, the AdaBoost and Random Forest 

algorithms had AUCs, Precisions, Recalls, and F1 

scores all above 90%. This shows the algorithms do 

not have a weakness in classifying a certain class or 

classifying the data at different classification 

thresholds. These evaluation metrics show that the 

algorithms are good all-around classifiers for the data 

from this study. The Neural Network, SVM, and k-

NN performed the worst with classification 

accuracies of 74.8%, 77.2%, and 74.8% respectively. 

The Neural Network’s performance could be limited 
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as this dataset involved dealing with both changes in 

patterns in the data as well as pattern recognition. 

This corroborates with (Oleinik, 2019), which states 

that because neural networks are good at identifying 

patterns in structured data, they are limited when 

they must combine pattern combination and 

recognition. The SVM’s performance may be limited 

because the dataset is very noisy in terms of its target 

classes being classified as above or below a mosquito 

abundance value. In addition, SVM is less effective 

in low-dimensional spaces, so the use of only three 

climate variables may have limited the model’s 

effectiveness. These limitations have been notes in 

the past in (Yadav, 2018). Finally, the k-NN 

classifier’s performance may be limited to redundant 

features in the data as all features contribute similarly 

as noted in (Imandoust & Bolandraftar, 2013). The 

dataset used in this study included the climate 

variables of humidity, temperature, and 

precipitation, all of which are interrelated to each 

other. Although the models in this study performed 

well, there are some possible sources of error that 

could have affected the accuracies of the model in a 

positive way overexaggerating the effectiveness of 

the classifiers or a negative way, underexaggerating 

the effectiveness of the classifiers. These sources of 

error mainly lie in the data sources themselves. The 

GIOVANNI data sources did have missing data 

values which if the climate variables were extreme 

for that day, could have affected the weekly averages 

and caused a mosquito abundance event. The 

GIOVANNI data also did not include errors which is 

unusual for historical climate data. Adding on, the 

mosquito counts, although taken from regular traps, 

could have external factors inflating or deflating the 

mosquito counts. Since, Chicago is an urban area, 

many microclimates exist where extreme climates 

can exist as a result for factors not accounted for in 

this study. These factors range from river 

eutrophication to man-made factors such as cars or 

human activity could be influencing mosquito 

counts. In other words, since data for this study was 

not specifically collected for the purpose of this 

study, but just for citizen science in general, a host of 

confounding variables other than the climate 

variables collected from remote sensing could be 

acting upon mosquito counts. To improve this, future 

studies should be longitudinal and measure mosquito 

counts from controlled traps specifically aimed at 

collecting mosquito data for the purpose of the study. 

One similar study to this one, (Chen et al., 2019), also 

uses several machine learning models to predict 

mosquito abundance. However, the predictions were 

based on socioeconomic, and landscape (land cover) 

features rather than the climate features utilized in 

this study. In addition, Charlotte was chosen as the 

city of interest due to its vast socioeconomic 

inequality and landscape differences. Furthermore, 

the study only compared three classifiers: k-NN, 

SVM, and a Neural Network. F1 scores higher as the 

best classifiers in this study were only achieved when 

both the socioeconomic and landscape factors were 

combined on a continuous input. Another study in 

Chicago, (Gardner et al., 2013), used machine 

learning to characterize the relationship between 

terrestrial vegetation and aquatic chemistry and 

mosquito abundance. This study measured 

mosquitoes for the study itself and focused on the 

spatial and temporal variation in the mosquito 

vectors and their larval production in relation to the 

spread of the West Nile Virus. The results support 

the original hypothesis that machine learning 

classification could be applied to predict mosquito 

abundance and that the AdaBoost classifier would 

perform the best at predicting mosquito abundance in 

the Chicago area based on the three climate 

variables. This is shown through the AdaBoost’s 

AUC, CA, Precision, Recall, and F1 score all over 

95% as well as each of the classification metrics 

being higher than those of the other classifiers.  
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V. CONCLUSION 

 

All six of the machine learning classifiers performed 

well in predicting mosquito abundance based on 

climate variables, as measured by the classification 

metrics. In particular, the AdaBoost and Random 

Forest models are particularly strong at predicting 

mosquito abundance. The findings from this study 

can be applied to current readily available remote 

sensing climate data to predict future mosquito 

abundance events.  Predicting mosquito abundance 

events is important as preventative measures can be 

taken such as mosquito habitat eradication. 

Preventing mosquito abundance in urban areas is 

especially important because of the rise of mosquito-

borne diseases such as the Zika virus, West Nile 

virus, Chikungunya virus, Dengue, and Malaria. 

These diseases spread rapidly in urban areas and can 

cause severe illness and in some cases even death. 

Preventing mosquitos’ abundance and removing 

breeding sites are key to stopping the spread of these 

diseases. The link between mosquitoes and diseases 

is widely known and has been written about in 

articles such as (Tolle, 2009). In addition, machine 

learning methods like the one in this study are much 

more cost-effective and can work on a wide range of 

land cover without needing to record data in specific 

locations, as remote sensing data is used. 

Additionally, the findings show the importance for 

the creation of large and high-quality publicly 

available datasets for easily tracked variables such as 

mosquito habitats. More citizen science initiatives 

will lead to more available data for data analysis 

studies to reach findings that can advance scientific 

knowledge. An improvement to the methodology of 

this study could be doing fieldwork in addition to the 

machine learning data analysis. Collecting mosquito 

data for the purpose of this study could help make 

data more regular and control for external variables. 

In addition, sensor data could be collected for the 

locations to account for the vast microclimates in 

urban areas rather than using the area-averaged 

remote sensing climate data. Furthermore, regression 

analysis could be done to predict precise mosquito 

numbers as opposed to classifying mosquito 

abundance events. One final improvement to the 

methodology would be to use satellite imagery and a 

convolutional neural network to identify potential 

mosquito habitats, and then climate variables to help 

predict mosquito abundance. This could narrow 

down the prediction of mosquito abundance to 

specific locations where preventative measures could 

be taken. In the future, more variables could be used 

for the machine learning model to make a correlation 

with for mosquito abundance prediction. This could 

include more specific factors such as chlorophyll 

(which is readily available through remote sensing). 

Chlorophyll can be an indicator of algal blooms and 

eutrophication, both of which have and will become 

increasingly frequent in local Chicago water bodies 

as predicted in (Schelske & Stoermer, 1971). 

Eutrophication has been linked to mosquito survival 

and development as found in (Schrama et al., 2018). 

Furthermore, it might be beneficial to look at the link 

between mosquito abundance and socioeconomic 

factors such as housing prices and average household 

income as poorer zip codes may have infrastructure 

that is more prone for mosquito habitat development 

and abundance as studied in (Chen et al., 2019). 

Future GLOBE protocols that could be added include 

Land Cover for mosquito habitat location 

predictions; pedosphere protocols such as Soil 

Temperature, Soil Moisture, and other soil 

characterization protocols (such as Soil Density); 

and other hydrosphere protocols such as nitrates or 

pH. Working with project mentors throughout the 

research process really enhanced the efficiency of 

our research. They helped us narrow down our vast 

ideas to a specific project that could completed in a 

realistic timeframe. The mentors also introduced and 

taught us how to use many of the tools that are used 

heavily in the Earth science community such as 
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GIOVANNI and GLOBE. Furthermore, the mentors 

facilitated us through the novelties of the scientific 

research process including literature review and 

formatting research papers. 
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IVSS BADGES 

 

A.    I am a Data Scientist 

The machine learning models in this study utilized a 

dataset created by us (the authors) which was 

compiled from a variety of data sources including the 

City of Chicago Data Portal, GLOBE, and 

GIOVANNI. We discuss the limitations of the data 

in our discussion (IV) as the GIOVANNI data was 

missing values and did not include errors and 

mosquito measurements might be influenced by 

confounding variables that are not controlled for as a 

result of using public data instead of collecting our 

own data. The data was also limited in terms of 

availability and reliability. Many data options were 

incompatible with our study such as climate data 

being recorded every 8-days instead of 7-days, which 

led us to averaging the daily values of a climate 

variable each week. In addition, this study uses the 

data with machine learning models to make 

inferences (predictions) about mosquito abundance 

events in the future. These inferences are made at a 

high accuracy and various standard classification 

metrics and statistical concepts are used to evaluate 

each model’s performance in predicting mosquito 

abundance in Chicago. Our data analysis aimed to 

solve the problem of mosquito-borne disease 

outbreaks in urban areas as predicting mosquito 

abundance and thus enacting preventative measures 

can stop the spread of mosquito-borne diseases.  

B.    I am a Collaborator 

As we (the authors) come from completely different 

backgrounds and parts of the world spanning three 

different time zones, we each brought our own skills 

which were vital to completing this project. This 

project required the integration of many skills 

including machine learning, mosquitoes, data 

analysis, literature review, scientific writing, and 

climatology. S.D. has a background in computer 

science and machine learning, so he used his 

knowledge to clean the data into a usable format and 

develop the machine learning models and their 

pipelines. D.L. has a background in Earth science 

data, so she was able to obtain and clean the 

mosquito data as well as climate data. A.M. has a 

background in scientific writing and was able to 

research the background and aide in the formatting 

of the report. G.V. has a background in graphic 

design and created graphics for the report and 

designed the presentation. All authors had 

experience with writing in general and wrote and 

gave feedback on the writing of the report. Without 

collaborative effort, this study would not have been 

possible as no one person had the background to 

complete this entire project. Furthermore, working as 

a team allowed us to get crucial feedback to improve 

all aspects of the study and report. With diverse 

backgrounds from schools across the Americas, as a 

team, we were able to develop creative solutions that 

we encountered throughout the research process. 

C.    I Make an Impact 

All of us (the authors) come from humid climates 

near urban areas. This means that mosquito-borne 

diseases are a local issue in all four of our 

communities. There is a need for prediction of 

mosquito abundance to enact preventative measures 

to inhibit the spread of disease. However, not all 

communities have the resources nor the 

infrastructure to enact enhanced methods of 

mosquito prevention without prediction. Our results 

utilize readily available remote sensing climate data 

to predict mosquito abundance. This can act as a 

cost-effective way to predict mosquito abundance 

and precent disease spread for communities who 

cannot afford them. Though our results focused on 

Chicago, our study could be applied to our local 

communities once mosquito data is available. We 

plan to share our research with communities who can 

utilize them and take effective preventative measures 

to stop the spread of mosquito-borne diseases.  


