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In this study, we present a comparative evaluation of four machine learning models for two 
mosquito abundance and vector competence derivative prediction tasks and assess the 
statistical significance of a variety of climatic inputs for doing so. Our results show that these 
models improve on prior work’s ability to predict how quickly the mosquito population is 
growing or declining and how quickly mosquitoes are becoming disease vectors for West Nile 
in an AOI.
Particularly noteworthy is how temperature was a crucial input in all of our models, but each 
model performed better with a different temperature metric or combination of metrics. The 
RFR for predicting the mosquito abundance derivative preferred full day surface temperature; 
the RFR for predicting the WNV mosquito positivity derivative preferred a combination of full 
day near surface temperature and full day land surface night temperatures; the backward 
elimination model for the abundance derivative preferred full day surface temperature; and 
the backward elimination model for positivity preferred land surface night temperatures 
alone.
Unlike much of the literature that informed our research, precipitation did not prove a 
significant factor across our machine learning models. However, indirect measurements of 
water quantity, such as EVI, did prove crucial and common across all models. This may be 
the result of differences between our AOI and that of other studies or the OLS regression we 
used to narrow down our climatic inputs, which only fits — and therefore deems significant —
linear correlations.
These findings, among others elaborated in our report, provide avenues for further research 
and a deeper understanding of how mosquito populations thrive and become more potent 
disease vectors in response to climatic variation. Similarly, there remain areas for 
improvement upon our research. First, we applied our methodology to a single area of 
interest — to test its robustness, future work should see how well the development procedure 
adjusts to different areas of interest. Second, we averaged data over the entirety of Chicago, 
making our predictions applicable to the whole of Chicago but not specific to a single area 
within it. With more consistent and detailed data recorded on more frequent time steps, our 
model would likely perform better and output predictions further localized to mosquito and 
West Nile hotspots within the greater City of Chicago.
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Mosquitoes are major vectors of disease and thus a key public health concern. Some cities 
have programs to track them, but such fieldwork is expensive, time-consuming, and 
retrospective. We present a comparative analysis of two machine-learning-based regression 
techniques for forecasting the derivatives of mosquito abundance and mosquito West Nile 
Virus (WNV) positivity in our AOI three weeks in advance. We used OLS regression to 
determine which of the climatic inputs utilized by prior work were statistically significant in 
predicting our desired outputs. We then trained four machine learning models, two Random 
Forest Regressors and two Backward Elimination Linear Regressions, and achieved 
RMSEs largely in the hundredths place or less. Our results indicate valuable directions for 
future research into forecasting mosquito population abundance and vector competence. 
This work is particularly applicable to public health programs, as our models' use of open-
source, remote sensing data to predict how quickly the mosquito population and their vector 
competence will change three weeks in advance, streamlining disease monitoring and 
prevention.

Abstract

Machine learning models are powerful predictive tools, especially for regression-based 
tasks such as ours. The Random Forest Regressor is particularly applicable to our work, 
as our desired output consists of numerical metrics across a continuous time series. Prior 
work, such as Lee et al. (2016), also found success with multiple linear regression. 
Similarly, Project AEDES implemented backward elimination linear regression to predict 
the number of Dengue cases per month in a specified location, based on weather 
variables (temperature and rainfall) and google search trends (Ligot et. al, 2021). Hence, 
we evaluated the performance of a Random Forest Regressor (RFR) and Backward 
Elimination Linear Regression (BELR) for each prediction task.
Our selection of precipitation, temperature, humidity, and vegetation metrics as model 
inputs was informed by the success of prior work. Francisco et al. (2021) used monthly 
average precipitation, average land surface temperature, and flood susceptibility data to 
prove a significant correlation between precipitation and dengue outbreaks at a one-
month lag in Manila, Philippines. Hassan et al. (2012) derived environmental variables 
such as urbanization level, Land Use Land Cover, Normalized Difference Vegetation 
Index (NDVI) from Landsat TM5 and Ikonos imageries to characterize landscape features 
likely associated with mosquito breeding habitats in Cairo, Egypt; land cover type and 
vegetation proved important indicators of potential mosquito habitats. Früh et al. (2018) 
trained a variety of machine learning models on citizen science data to predict the 
occurrence of Aedes japonicus japonicus, an invasive mosquito species in Germany. 
Their work indicated that mean precipitation, mean temperature, and drought index were 
the most accurate predictors of mosquito occurrence. Chen et al. (2019) indicated that 
landscape factors alone yield equal or more accurate modeling when compared to or 
paired with socioeconomic factors. Consequently, we pursued a hybrid citizen-science 
and government data approach where we evaluated the performance of a variety of 
machine learning regressors powered by the aforementioned ecological factors.

Introduction & Literature Review

Data Retrieval and Cleaning: We used Google Earth Engine to export satellite and 
weather data in weekly timesteps. We obtained most of our ecological data from ERA5 as 
it aggregated the variables we needed in one place at a uniform, high level of 
measurement precision. We chose the Aqua satellite data for the day and night 
temperatures as it provided a full dataset across our time series of interest, 2007-2020 and 
complete EVI data within weekly timesteps. We separated these ecological variables into 
731 week-long timesteps ranging from December 31, 2006 and January 2, 2021 to align 
with the CDC’s epidemiological year. 
The City of Chicago’s open access West Nile Virus Mosquito Test Results dataset provided 
the output we aimed to predict. It contains the results from Gravid and CDC mosquito traps 
located across the City of Chicago measured on a weekly basis throughout summer from 
2007 - 2021. This data provided two crucial metrics for our project: the number of Culex 
mosquitoes captured at each trap and the number of Culex mosquitoes captured that 
tested positive for West Nile Virus, meaning they were capable of transmitting it. During 
data cleaning, the Gravid trap data was isolated, the weekly measurements were aligned 
with the epidemiological year, weekly mosquito abundance was quantified as the number 
of mosquitoes divided by the number of total traps in the area, and weekly West Nile Virus 
positivity rate was quantified as the number of mosquitoes testing positive for the disease 
divided by the mosquito abundance (figure 3). Points of discontinuity across the summer 
months were identified and analyzed: 2009 and 2011 displayed the least continuity. Weeks 
22 through 40 emerged as the widest common range across the data, so we filled in the 
missing data points for weeks 22 through 40 every season using SciKit Learn’s imputer’s 
Most Frequent filling method. Aiming to mesh this dataset with citizen science GLOBE 
Mosquito Habitat Mapper (MHM) data as Früh et al. (2018) did, both the City of Chicago 
data and Cook County MHM data were mapped against the boundaries of the City of 
Chicago in ArcGIS – no MHM points fell within city limits (Figure 1). Although the GLOBE 
Observer project’s data was not applicable to our study, our search revealed that GLOBE 
MHM data was remarkably comparable to official, government-collected mosquito trap 
data — we hope future improvements on our models will utilize that potential.

Pre-processing: Lopez et al. (2014) observed higher correlations between dengue 
outbreaks and environmental factors when time lags were introduced. Inspired by this 
work, we examined the relationship between the various climatic variables collected from 
our literature review and the mosquito abundance and positivity outputs by graphing them. 
Shifting EVI, Land Surface Temp, and Specific Humidity (as it relates to mosquito 
abundance), and total precipitation (as it relates to West Nile Virus positivity rates) three 
weeks forward in time better aligned the input and output peaks, as seen in Figure 4. We 
then padded our dataset, extending the weeks in each summer to 21-41, so as to calculate 
the derivative of mosquito abundance and WNV positivity for our weeks of interest, 22-40. 
We elected to predict the derivatives of mosquito abundance and WNV positivity as it 
enables our models to act as predictors for the state of the mosquito population in our AOI, 
as opposed to predicting what quantities would be observed in government traps. 

Feature Selection and Model Training: Having assembled our initial pool of independent 
climatic variables based on the findings of prior work, we narrowed down our pool of inputs 
using ordinary least squares (OLS) regression. First, we ran OLS regression on each input 
individually to establish which had statistically significant correlations with mosquito 
abundance and which had statistically significant correlations with mosquito WNV positivity 
using a p-value of 0.05. Then, we grouped the promising climatic inputs for each prediction 
task into various sets and ran OLS regression on each set, revealing EVI, land surface 
temperature, total precipitation, and specific humidity as the optimal inputs for predicting 
mosquito abundance and EVI, specific humidity, near-surface temperature range, and 
night-time temperature as the optimal inputs for predicting mosquito WNV positivity. We 
then trained an RFR and BELR to predict the derivative of mosquito abundance and an 
RFR and BELR to predict the derivative of mosquito WNV positivity. The RFRs were built 
using SciKit-Learn’s RFR model and trained using its Randomized Search Cross Validation 
tool. On running 100 iterations with three cross folds each, the optimal hyperparameters for 
each RFR emerged. The BELRs were built using Sci-Kit Learn’s Linear Regression model 
and inputs were eliminated using OLS regression to determine which inputs were 
statistically insignificant to the BELR’s predictions.

Methodology Results

Which machine learning models and climatic inputs are most effective for 
predicting the derivatives of mosquito abundance and mosquito West Nile virus 
positivity? 

Research Question

In summary, our models can accurately predict the derivatives of mosquito abundance and 
mosquito WNV positivity in our AOI. The BELRs slightly outperformed the RFRs in terms 
of overall metrics, however, the RFRs proved significantly more capable of fitting the 
observed mosquito values in weekly RMSE. Our methodology and results hold potential 
for valuable applications to public health programs and concerns. As our ecological 
variables are lagged three weeks forward in time for training purposes, our models can be 
used in real-time as predictors for the derivatives of mosquito abundance and WNV 
mosquito positivity three weeks in advance — providing public health officials with critical 
information on the development of mosquito populations in time for appropriate 
intervention and mitigation as seen in Figure 10. Avenues for future work and development 
on our results revolve around how to further increase accuracy and best incorporate our 
methodology into existing public health initiatives.

Conclusion

Figure 6: Random Forest Regressor for Predicting the Derivative of 
Mosquito Abundance

Figure 7: Backward Elimination for Predicting the Derivative of Mosquito 
Abundance

Figure 8: Random Forest Regressor for Predicting the Derivative of Mosquito 
West Nile Positivity

Figure 1: GLOBE Mosquito Habitat 
Mapper sites and Chicago government 
mosquito trap sites plotted on ARCGis

Figure 9: Backward Elimination Linear Regression for Predicting the Derivative 
of Mosquito West Nile Positivity

Figure 2: Our team records data through the 
GLOBE Observer mobile application

Figure 4: introducing three-week lag into our climatic variables to help their peaks align more 
closely with the peaks in mosquito abundance - same technique used for positivity.

Mosquito Abundance Over Time (2007-20)

West Nile Virus Positivity Over Time (2007-20)

● West Nile Virus Mosquito Test Results obtained through the Chicago Data Portal
● Ecological datasets collected from Google Earth Engine: Land surface temperatures, 

near surface temperatures and precipitation from ERA5 provided by the European 
Centre for Medium-Range Weather Forecasts (ECMWF); Specific humidity from 
NLDAS-2 provided by NOAA/NCEP, NASA’s Goddard Space and Flight Center, 
Princeton University, and the University of Washington;  Day and night land surface 
temperature from the MODIS sensor on Aqua provided by NASA’s EOSDIS; EVI 
(Enhanced Vegetation Index) from the MODIS sensor on Aqua provided by Google 
and NASA’s EOSDIS. 

Materials

Figure 5: Comparing data filling methods for positivity 
rate.

The mosquito population 
is becoming a less potent 

West Nile vector

The mosquito population 
is becoming a more

potent West Nile vector

Figure 3: Mosquito abundance and mosquito WNV positivity data graphed over time. 

Tables 1 and 2 detail the performance of the RFR and BELR models for each prediction 
task using overall MAE, overall RMSE, maximum RMSE, and minimum RMSE. Overall
MAE and RMSE provide a single value describing the prediction error for the entire testing 
set, while Max RMSE and Min RMSE provide the maximum and minimum values from the 
RMSE calculated at each time step in our testing set. We opted to provide our general 
error metric in both MAE and RMSE as each provides a different view into model 
performance: while MAE’s linear nature results in equal weight given to all errors, RMSE’s 
nonlinear nature further penalizes errors that are larger in absolute values (Chai & Draxler, 
2014). Figures 6-9 provide a graphical representation of the RMSE calculated at each time 
step.In comparing the overall MAE and RMSE values for the RFR and the BELR models 
used for each task, the BELRs outperforms the RFRs. However, the RFR model for 
predicting the mosquito abundance derivatives has a minimum RMSE almost 3 times 
smaller than the BELR’s. Similarly, the RFR model for predicting the mosquito WNV 
positivity derivatives has a minimum RMSE almost 2.5 times smaller than its BELR 
counterpart. This indicates that the RFR models are capable of predicting the desired 
output more closely than the BELR models: a result supported by RFR’s ability to fit 
nonlinear data, as opposed to BELRs which can only fit linearly.
Table 3 compares the overall RMSE of our RFR and BELR models to that of a similar 
study by Lee et. al that aimed to predict mosquito abundance using a multiple linear 
regression (MLR) and an artificial neural network (ANN). Our mosquito abundance 
derivative models display a lower overall RMSE for larger ranges in the desired output. 
Additionally, our mosquito WNV positivity derivative models’ overall RMSE comprises a 
smaller fraction of the desired output’s range than that of Lee et. al. Given the high 
variability of the desired mosquito population characteristic output and the extreme outliers 
evident at points such as week 29 in 2016 in Figures 6-9, our models’ errors are 
comparatively low and demonstrate strong overall performance.

Model Overall
MAE

Overall 
RMSE

Max RMSE Min RMSE

Random 
Forest 
Regressor

5.31120471
1842105

7.47669616
537873

3.69971047
29924346

0.00092115
9306679115
9

Backward 
Elimination 
Linear 
Regression

4.45476933
2456141

6.69620884
3026129

3.31894896
83901288

0.00272139
5246351403

Model Overall MAE Overall 
RMSE

Max RMSE Min RMSE

Random 
Forest 
Regressor

0.004442247
8389793

0.006522116
317871164

0.002433148
7872215904

1.378654314
6482505e-06

Backward 
Elimination 
Linear 
Regression

0.004278856
9042500006

0.006450763
508888683

0.002520300
9067467017

3.539567595
920732e-06

Table 1: Error results for RFR and BELR models used to predict mosquito 
abundance derivatives.

Table 2: Error results for RFR and BELR models used to predict mosquito WNV 
positivity derivatives.

Figure 10: Annotated graph of Random Forest Regressor’s predictions of the derivatives of mosquito WNV positivity rate illustrating the public health program 
applicability of our finds. 

Model Overall RMSE Range of Desired Output

RFR for Mosquito Abundance Derivative 7.47669616537873 98

BELR for Mosquito Abundance Derivative 6.696208843026129 98

RFR for Mosquito WNV Positivity 0.006522116317871164 0.0435

BELR for Mosquito WNV Positivity 0.006450763508888683 0.0435

MLR for Mosquito Abundance 17.53 78

ANN for Mosquito Abundance 14.38 78

Table 3: Comparison of overall RMSEs for our RFR and BELR models and Lee et. al’s MLR and ANN. 
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