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Abstract: 

Monitoring mosquito abundance and its contributing indices are crucial for controlling West 

Nile Virus (WNV), the most prevalent vector-borne disease in the contiguous United States. 

As mosquito-borne diseases like West Nile Virus (WNV) are primarily transmitted through 

infected mosquitoes, it is a good indicator of mosquito prevalence in an area. Empirical data 

from our field research showed a direct correlation between fertilizer concentration and 

mosquito larvae population in a small trap experiment. However, detection of the presence 

of fertilizer in water bodies across counties and states requires site sampling, which is very 

time-consuming and expensive to perform. This research is based on the well-documented 

correlation between significant fertilizer presence in a water system and algae blooms. 

Detection of algae in inland water could provide an early warning signal in controlling 

vector-borne diseases such as the West Nile Virus (WNV). Remote sensing and satellite 

imagery provide a cost-effective alternative for monitoring inland water bodies such as 

rivers, lakes, water reservoirs, ponds, etc. We developed a supervised machine learning 

model using the Naïve Bayes algorithm to predict WNV breakout by detecting algae from 

Sentinel-2 MSI images. The model was trained using high spatial resolution products (20m) 

from Sentinel-2 satellites over Sacramento, California. Methods applied for algae bloom 

extraction from Sentinel-2 MSI images, with a high spatial resolution, are based on an 

estimation of Chlorophyll-a (Chla) and the use of the Normalized Difference Chlorophyll 

Index (NDCI), which is widely used for ocean color data. To suppress the chlorophyll from 

vegetation in a satellite image, a combination of NDCI and Normalized Difference Water 

Index (NDWI) was used to measure algae presence in water bodies. A time series dataset was 

developed using Sentinel-2 images from 2017-2021 for algae bloom information. The training 

dataset was further enriched with feature sets such as water%, vegetation%, algae 

observed/reported in the public domain, and the California Department of Public Health’s 

West Nile Virus 2006-Present dataset. The accuracy of the ML predictive model ranges from 

0.7 to 0.95, depending on the algorithm and the length of time series used for the training of 

the model. Our research also validated the time lag between algae bloom and actual detection 

of the WNV virus reported through public health departments. With additional training 

data, this model can be extended to predict potential WNV outbreaks for any given county 

using satellite images.   
(Keywords: Machine Learning, Mosquito Abundance, Algae, Eutrophication, Fertilizer Runoff, Remote 

Sensing, West Nile Virus, Sentinel-2, SVM, Support Vector Machine, Naïve Bayes, Prediction Model) 



 

1. Introduction 

The mosquito vector-borne West Nile 

Virus remains a threat to public health 

globally. Even in the United States, where 

many vector-borne diseases have been 

effectively eliminated, WNV was responsible 

for the deaths of 66 individuals in the United 

States, during 2020 alone (CDC). 1 in 150 

infected people will develop critical illnesses 

because of this pathogen (CDC). Because 

there is currently no vaccine available for 

WNV in humans, prediction remains one of 

public health professionals' most potent tools 

in preventing the spread of the virus. 

Mosquito populations and density have been 

shown to be correlated with WNV case rates 

(Mori et al. 2018) indicating the potential 

viability of using other variables linked with 

mosquito density as a means of predicting 

WNV case rates. A variety of predictive 

variables including temperature (Mori et al. 

2018) as well as rice cultivation (Kovach et 

al. 2018) with the latter’s viability stemming 

directly from its correlation with mosquito 

populations. 

The excessive use of fertilizer, 

especially near reservoirs, has also been 

shown to increase mosquito density in the 

surrounding regions (Reuben et al., 2008). 

But beyond simply increasing the number of 

mosquitos, the investigation has established 

that aqueous nutrients commonly found in 

fertilizer are linked to an increased arboviral 

content in mosquitos found in the area (Yee 

et al., 2017). However, the impact of algae, 

nor fertilizer, on mosquitos has not been 

studied on a scale larger than a small region, 

let alone a possibly widely applicable model 

grounded in remote sensing data. To fill this 

gap, this research aims to detect a practically 

usable link between algae coverage in inland 

waters, a proxy for fertilizer runoff, and 

WNV case rates in the surrounding area. Due 

to the known effects of fertilizer on mosquito 

populations, we hypothesized a strong 

positive relationship. However, due to the 

larvicidal properties of some algae species, 

we were aware that a noticeable negative 

correlation was also a possibility. 

Detection of algae in inland water 

could provide an early warning signal in 

controlling vector-borne diseases such as the 

West Nile Virus (WNV). Remote sensing and 

satellite imagery provide a cost-effective 

alternative for monitoring inland water 

bodies such as rivers, lakes, water reservoirs, 

ponds, etc. We developed a supervised 

machine learning model using the Naïve 

Bayes algorithm to predict WNV breakout by 

detecting algae from Sentinel-2 MSI images. 

The model was trained using high spatial 

resolution products (20m) from Sentinel-2 

satellites over Sacramento, California. 

Machine learning algorithms are 

widely used for monitoring soil, water 

quality, crop classification, and algae 

blooming in ocean water using satellite 

images. [SVM & Crop]. ‘Deriving Water 

Quality Parameters Using Sentinel-2 

Imagery: A Case Study in the Sado Estuary, 

Portugal’ is a good reference for measuring 

Chlorophyll-a to indicate the blooming of 

algae using machine learning.  

Empirical data from our experimental 

field research showed a direct correlation 

between fertilizer concentration and 

mosquito larvae population in a small trap 

experiment. 

In view of this, we developed a 

supervised machine learning model using the 

Naïve Bayes algorithm to predict WNV 

breakout by detecting algae from Sentinel-2 

MSI images. The model was trained using 

high spatial resolution products (20m) from 

Sentinel-2 satellites over Sacramento, 

California. Methods applied for algal bloom 

extraction from Sentinel-2 MSI images, with 

a high spatial resolution, are based on an 

estimation of Chlorophyll-a (Chla) and the 

use of the Normalized Difference 



Chlorophyll Index (NDCI), which is widely 

used for ocean color data. The effectiveness 

of the model was tested with 2 different 

sentinel tiles (10SFH and 11SKA) for data 

from 2020 and 2021. The accuracy of the ML 

predictive model ranges from 0.7 to 0.95, 

depending on the algorithm and the length of 

time series used for the training of the model. 

 

2. Study Area and Data 

2.1 Study Areas 

2.1.1. Experimental Research 

For our earth science field research to study 

the effect of fertilizer on mosquito breeding, 

St. Petersburg, Florida was chosen as our 

study area for mosquito traps due to its 

proximity to one of our researchers and its 

known mosquito presence. The experimental 

component involved four mosquito traps in 

close proximity to one another in the St. 

Petersburg, Florida area. Each trap consisted 

of an open five-gallon bucket filled with 10 

liters of tap water and a varying amount of 

“Miracle-Gro All Purpose Plant Food” 

powder. The quantity of fertilizer served as 

our four experimental treatments were 0 tsp 

(0 ml), 1 tsp (4.93 ml), 2 tsp (9.86 ml), and 3 

tsp (14.79 ml) per 10 L of water or a 

concentration of 0 ppt, 0.493 ppt, 0.986 ppt, 

and 1.479 ppt. The experiment took place 

over the course of 3 weeks during the time 

interval June 28 - July 19, 2022. Besides the 

varying treatments, all other outside factors 

including trap design, water quality, 

environmental conditions, and weather were 

effectively identical between traps and had a 

minimal effect on variation in the data as a 

result. 

2.1.2. Remote Sensing 

To expand the research to study algae 

blooming and its effect on mosquito breeding 

(more specifically West Nile Viruses), 

California was chosen as our area of interest 

(AOI) for research using remote sensing 

satellite images. In the recent past, 

California’s Fresno, Sacramento, Yolo, 

Alameda, and San Joaquin areas have 

reported both harmful algae blooming and 

West Nile Virus cases. California offers a 

broad range of environments- temperate 

coniferous forests, deserts, mountains, 

wetlands, lakes, rivers, grasslands, 

woodlands, urban areas, chaparrals, and 

agricultural areas. The temperature in 

California ranges from 10°F to 97°F. 

California has many open access public data 

that provides data on inland algal blooms 

from 2016 to 2022 and WNV data from 2006 

to 2022. 

For Satellite images, the region 

around Sacramento, CA with a latitude range 

from 37.96N to 38.59N and a longitude range 

from -121.76W to -121.19W was selected as 

the primary region due to the diversity of 

landscape with inland water bodies, as well 

as the availability of West Nile Virus data 

from 2006 onwards. Additionally, freshwater 

harmful algae bloom incident response data 

was gathered for the counties within the 

specified AOI around Sacramento, CA. At a 

later stage in this research, Fresno, CA was 

added to expand the dataset to improve the 

reliability of the ML algorithm for WNV 

prediction. For this region, Latitude ranges 

Figure 1. 10 
SFH tile for 
the 
Sacramento 
county 
courtesy of 
ESA 



from 36.04N to 37N and Longitude ranges 

from -10.37W to -119.14W.  

During the initial stage, images from 

Landsat, Sentinel-3, and Sentinel 2 were 

evaluated for easy retrieval and classification 

of water bodies. While both Landsat and 

Sentinel-2 provide good spatial resolution 

(10m-60m) for water classification algorithm 

and detection of inland water, we finally 

settled on accessing Sentinel-2 image to take 

advantage of visible and Near Infrared 

(VNIR) and availability of level 2A products. 

Based on the earlier research, Reflectance-

classification methods can be sufficient for 

mapping algal blooms with the spectral bands 

located in visible and NIR wavelength 

regions [1]. Spectral bands in red-edge and 

NIR regions show much better results for the 

discrimination of algal blooms in inland 

waters than visible bands.  

Level 2A provides tiles of 100km x 

100km images for each band. While no single 

tile covered the entire area of interest, tiles 

10SFH and 11SKA were selected for 

Sacramento and Fresno regions respectively, 

2.2. Data 

2.2.1 Experimental Data 

Larvae was tallied manually and 

weekly across the three-week 

experimentation period using a miniature clip 

on microscope attachment. The contents in 

each five-gallon bucket were purged and 

refilled after each week. Although the 

magnifying power fell short of identifying 

the specific species of larvae, the broad 

genus, either culex or aedes, was specified. 

Overall, culex was more abundant in number 

than aedes, as found in the trap experiment. 

This can likely be attributed to the regional 

variability of mosquito species in St. 

Petersburg, Florida. Mosquitoes had a 

preference to lay their larvae in fertilized 

water but only up to a certain concentration, 

peaking in the mid-ranges of 2 tsp (9.86 ml). 
  

Figure 3. Aedes, Culex, and Total larvae counts for 
fertilizer treatments 

Figure 2.. Sentinel-2 tile images via ESA 



2.2.2 Satellite Imagery Data  

  Retrieval of satellite data from 

California was done by utilizing a GeoJSON 

file to define a specific California county’s 

area. The file was then used as an input to the 

Sentinel-2 product database along with 

restrictions on time range and cloud cover 

(kept to between 0% and 5% for training). 

Products were additionally filtered to be 

Level-2A and with a low unidentified pixel 

percentage. Products were attempted to 

download using direct access (Copernicus 

Open Access Hub) as well as python script 

using API for Sentinelsat. Due to the 

flexibility to programmatically download 

images from long-term archival (i.e. old 

data), python API was preferred. 

A total of 27 Sentinel-2 MSI products 

from 2009 to 2022 were downloaded for 

spatial resolution of 10M, 20m, and 60m 

across California (Sacramento, Orange 

County, and Fresno). All Sentinel-2 MSI 

products and images were validated using 

SNAP software provided by the European 

Space Agency. Finally, 15 Sentinel-2 MSI 

products were processed for generating a 

Normalized Difference Water Index (NDWI) 

and NDCI. 

3. Methodology 

3.1 Experimental Research 

For the experiment, we split the 

experimental results into two groups for 

analysis: One for Culex mosquitoes and one 

for Aedes mosquitoes. The weekly totals for 

each treatment were then summed to create 

an overall observed larvae total for each 

treatment for both the Culex and Aedes 

group. We then ran a Chi-Squared Goodness 

of Fit test on each group's four treatments and 

their respective larvae counts. 

Throughout each week, algae grew in 

all the buckets. Though the algae were not 

quantitatively measured, the water with more 

fertilizer was consistently greener than the 

water with less fertilizer. Larvae did not 

appear in the buckets until after the algae had 

a few days to grow. 

 

At the end of each week, the larvae in 

each bucket were counted and classified by 

genus. The larvae were extracted from the 

bucket using a smaller container, from which 

they were then placed onto a white surface 

coated with isopropyl alcohol via pipette. 

This killed the larvae, which prevented them 

from moving so they could be easily 

photographed, identified, and counted. After 

all larvae were counted and identified, each 

bucket was reset; they were dumped and 

refilled with new water and fertilizer. This 

way, each week was a different trial, and we 

could record the total number of larvae from 

each bucket accumulated from the three 

different weeks 

Figure 4. Weekly Progress 

Figure 5. Larvae growth 



Only two genera of mosquitoes, 

Aedes and Culex, were identified from the 

traps after all three weeks of trials, and 

species-specific identification was no 

possible with the level of magnification we 

could achieve. 

 

 In order to conduct a proper Chi-

Squared Test, our data must be derived from 

a random sample, consist of only mutually 

exclusive categorical variables, and result in 

expected counts each greater than five. 

Nothing to our knowledge is unique enough 

about St. Petersburg Florida mosquitos that 

would make them unrepresentative of the 

national mosquito population as a whole. 

Furthermore, while our categorical variables 

are represented by numerical fertilizer 

concentrations, these quantitative values are 

not being used for regressive or predictive 

analysis, and the Chi-Squared GOF test is 

only analyzing differences between these 4 

groups. Finally, each of our expected counts 

is well over five for both our Culex and 

Aedes samples. 

3.2 Remote Sensing and Algae Detection 

3.2.1 Sentinel-2 Product Pre-processing 

     Since we downloaded Sentinel-2 MSI 

Level 2A products, it’s already been 

processed for atmospheric corrections by 

PDGS using the Sen2Cor processor [2]. 

Level 2A also includes a scene classification 

map (SCM) and quality indicators (QI) that 

allow easy segmentation to identify 

cloud/snow coverage, vegetation, water, and 

soil. This study utilized this algorithm to 

obtain data on vegetation and water in 

individual products. The algorithm is based 

on a series of threshold tests that use input 

TOA reflectance as input from the Sentinel-2 

spectral bands. The products provided by 

Sentinel-2’s satellites cover an area of 100km 

x 100km. This large size leads to the products 

covering multiple counties. However, data 

from the globe or on land observations are 

available by county within a state. So, it’s 

necessary to slice satellite images to map 

with county boundary before it can be used 

for further analysis. 

This resulted in the need to splice the 

test images into 5 individual smaller columns 

(labeled as zones in the dataset) to be 

analyzed and processed separately. Doing so 

provides the algorithm the ability to better 

establish a correlation between a county’s 

water body eutrophication and WNV cases. 

County-level segmentation created 5x data 

from a single satellite image for training the 

prediction model.  

Using the latitude and longitude data, 

harmful algae observation and WNV dataset 

were manually labeled for zones. Further 

occurrence of algae observation was 

converted as a numerical value for any given 

year and month for a specific zone. WNV 

data for the same period were manually 

labeled as “yes” or “no” for a period of study 

(2020 and 2021) and all counties are covered 

within each tile of the sentinel-2 MSI image.  

3.2.2 Inland Water and Algae Classification 

Reflectance-classification methods 

can be sufficient for mapping algal blooms 

with the spectral bands located in visible and 

NIR wavelength regions [3]. The Sentinel-2 

products additionally come in three 

resolutions: 10m, 20m, and 60m. Each 

resolution offers a different set of 13 bands, 

with 10m offering the least number of bands 

Figure 6. Genera of mosquitoes 



and 20m and 60m offering the same number 

of bands. In this study, we aimed to observe 

algae presence over inland water bodies. 

During this research, we focused on 

extracting Chlorophyll-a (Chla) information 

as an indicator of algae presence.  

Normalized Difference Chlorophyll 

Index (NDCI) was proposed as a novel index 

in this research [4] due to its sensitivity to 

CHL-a in turbid water, a common occurrence 

in inland water.  

The NDCI results from the following 

equation: 

𝑁𝐷𝑊𝐼 =  
𝑏𝑎𝑛𝑑 2 − 𝑏𝑎𝑛𝑑 11

𝑏𝑎𝑛𝑑 2 + 𝑏𝑎𝑛𝑑 11
 

A NumPy array was created to plot 

using rasterio plot function. Based on the 

plot, it was observed that chlorophyll 

reflectance from vegetation was making it 

difficult to distinguish algae indicators in the 

inland water. To overcome this, NDWI 

(Normalized Difference Water Index) 

algorithm was used to mask out vegetation 

from the image. NDWI indicated a change in 

liquid water content and it’s less sensitive to 

atmospheric effects. 

In order to best observe algae present 

in the water bodies, an algorithm was 

developed further to combine both NDCI and 

NDWI to generate a heatmap view and index: 

Relative Normalized Difference Chlorophyll 

on Water Index (R-NDCWI).  

This index allows for the direct 

observation of chlorophyll content over 

inland water bodies. By using the NDWI as a 

mask to mask out non-water bodies out of the 

NDCI, the R-NDCWI provides a reliable 

index for the observation of chlorophyll on 

water bodies. A higher presence of 

chlorophyll in these water bodies would 

typically indicate eutrophication of these 

water bodies.  

The raster was further sliced into 5 

individual slices of 50,000 x 10,000 pixels 

each. Since the data was too large to be 

analyzed for each pixel, each image was 

scaled down (0.1) using the “resampling” 

function available with Rasterio. A threshold 

was determined through trial and error to 

suppress noise (i.e. replacing all pixel values 

below a threshold value by the threshold 

itself). A heatmap was generated to view the 

output before the threshold was finalized. 

Based on the final threshold value, R-

NDCWI was generated for each slice of the 

raster. A scaled factor of 1000 was used to 

normalize the data further. Final r-NDCWI 

was manually mapped to the zone identified 

during the pre-processing step.  

Using Sentinel-2 data products from 

2020 to 2021, a time series view of NDCI, 

NDWI, and R-NDCWI was developed for 

both Sacramento and Fresno areas as a 

training dataset. The data was saved to a CSV 

file for use as input to train the ML prediction 

model.  

3.2.3 Feature Enrichment 

  

The indices generated for each image 

were further enriched with additional features 

available from both satellite data as well as 

each observation data. Since various satellite 

images for different locations may have 

Figure 7. Data model for WNV prediction based on 
Sentinel-2 products and additional information 



different landscapes (vegetation, water 

bodies, etc.), it was decided to add additional 

dimensions to make the prediction model 

multidimensional. A python utility using 

geopandas was developed to extract water% 

and vegetation% from the scene 

classification details available in the 

metadata for each sentinel-2 MSI image. In 

addition GLOBE landcover data was also 

extracted. 

Earth Inland Observation data, 

reported/observed blooming of harmful algae 

for the same period (2021-22), was used to 

further enhance the dataset(X-train). WNV 

data available for California was further 

sliced to map with the county zone and period 

(2020-21) as the Y-train dataset.  

 

 

3.3. Machine Learning Predictive Model  

 Since the dataset has features which 

were independent of each other 

(Vegetation%, Algae Observed, Water%, 

Chlorophyll, GLOBE landcover), we decided 

to use a Naïve Bayes algorithm as a machine 

learning classifier for supervised learning. 

Another reason for selecting the Naïve Bayes 

machine learning algorithm was the 

availability of a limited dataset for training. 

Naïve Bayes is known to perform better even 

with small training datasets.  

3.3.1 Gaussian Naïve Bayes Classifier 

The Naïve Bayes algorithm operates 

on a probabilistic model that decides whether 

a piece of data belongs to a specific class 

based on the probability of it belonging to 

each specific class. The model in the study 

utilized a feature matrix of the county, water 

percentage, vegetation percentage, landcover 

data from GLOBE, algae presence, R-

NDCWI, and NDWI from the CSV file 

created during feature enrichment. The 

response vector is the WNV case presence 

also taken from the feature enrichment CSV 

file as output or prediction. The predictive 

model is based on training data retrieved 

Figure 8  NDCI, NDWI and R-NDCWI Index generation and scene classifiation 



through the Sentinel-2 products for the 

Sacramento and Fresno regions.  

Since feature values are expected to 

follow gaussian distribution for a given 

landscape/area of interest and the likelihood 

of West Nile Virus near water bodies is high, 

a Gaussian Naïve Bayes classifier seems to 

be the right model for our objective. Also, 

this data was used in a Gaussian Naïve Bayes 

model with a linear classifier and was tested 

using Sentinel-2 products for the Los 

Angeles and Orange County regions.  

In addition to exploring a Gaussian 

Naïve Bayes algorithm, a Support Vector 

Machine (SVM) and Decision tree predictive 

model were also explored.  

3.3.2 Support Vector Machine Predictive Model 

 SVM is a supervised learning method 

based on statistical learning theory and 

structural risk minimization principle. It has 

unique advantages in handling small sample 

data, solving nonlinear problems, and 

identifying high dimensional patterns. 

Utilizing an SVM algorithm, the 

predictive model took the same input of the 

county, water percentage, vegetation 

percentage, landcover data from GLOBE, 

algae presence, R-NDCWI, and NDWI as a 

training input and WNV cases as the training 

output. An SVM model operates by creating 

a plane with the largest margins between two 

separate sets of data which are labeled for 

respective classes. For example, the classes 

that would be used in our model would be 

WNV presence or no WNV presence. What 

is unique about this model is that the space in 

which the plane is drawn and the data is 

plotted can be interpreted non-linearly by the 

algorithm to better separate the classes 

through a plane.  

3.3.3 Decision Tree Predictive Model 

 A Decision Tree model operates on a 

set number of rules to ascertain whether a 

piece of data belongs to a specific class. 

These strict rules are operated in a “tree” 

fashion that processes the data through 

various conditionals to predict the class the 

data belongs to. The study utilized this model 

by using the same training input of county, 

water percentage, vegetation percentage, 

landcover  data from GLOBE, algae 

presence, R-NDCWI, and NDWI and 

training output of WNV cases of the county.  

4. Results 

4.1 Experimental Research Results 

4.1.1 Statistical Analysis and Results 

The resulting P-Values for the Culex 

and Aedes mosquito count distributions were 

6.068412355065628e-101 for Culex mosquito 

count and 5.414747992821513e-06 for Aedes 

mosquito count, both less than our alpha. 

These results indicated a statistically 

significant difference in the proportion of the 

total mosquito larvae population in each of 

the four fertilizer concentrations. 

A Chi-Squared test cannot be used to 

indicate a causal relationship, or that the 

different larvae counts were a direct result of 

the varying fertilizer concentrations. 

However, the significance of our results 

indicates that there may be some relationship, 

and furthermore, that that relationship may be 

useful in predicting the number of mosquitos. 

Due to the limited time frame of our 

experiment we were unable to gather enough 

distinct samples to conduct an ANOVA test 

to experimentally analyze this relationship. 

But, we were able to assess the strength of 

this correlation with remote sensing and 

public health data, both input to a Naïve 

Bayes Machine learning predictive model. 

4.2 ML Predictive Analysis in Python and 

Results  



Different satellite images were used 

for the model with Water % ranging from 

0.5% to 10% and Vegetation percentage 

ranging from 31% to 43% due to season 

variance during the months of June to August 

in 2020 and 2021. The table below shows the 

average value for results extracted from the 

satellite image using machine learning 

algorithms in python.  

 
Table: 1 Prediction Results 
 

ML Water 
% 

Vegetation 
% 

R-
NDCWI 

Accuracy 
% 

Naïve 

Bayes 
1% 37% 17 67% 

SVM 1% 37% 17 69% 

 

Results from the decision tree 

algorithm have been excluded as it didn’t 

show any variance with different training 

datasets.  

While water % is relatively low in 100Km x 

100Km satellite image, with a raster slice to 

match the image with a county boundary, % 

water was observed to be higher in counties 

with rivers, lakes, and other water bodies.  

1. 4.2.1 Use of Satellite Images as a Viable 

Option for Monitoring Algae 

 

With the combination of NDCI and 

NDWI, the presence of algae was easily 

detected across 3 different tiles from 

Sentinel-2 MSI Level 2A products. With tiles 

having a low percentage of water, it was 

difficult to determine algae presence in 

inland water. However, algae detection using 

R-NDCWI showed a noticeable result with 

images having relatively large inland water 

bodies (lake, river, canals). These inland 

water bodies in turn showed high levels of 

chlorophyll during months in which algae 

coverage warnings were issued. Among all 

sentinel images analyzed, the presence of 

algae, as indicated with R-NDCWI was 

observed to be the highest during July and 

August months.  

4.2.2 Validation of Algae Extract from Satellite 

Image with Hfab Data  

Relatively high R-NDCWI values 

showed a strong correlation with Hfab 

observed data available for incidents reported 

in the state of California. This indicated that 

the model of using high R-NDCWI to assume 

algae presence had merit due to a large 

Figure 9. Sentinel-2 product of Sacramento area of interest region through preprocessing step 



number of data points used and a lack of 

outliers that conflicted with the R-NDCWI. 

4.2.3 Time Delay in WNV Cases  

 Based on the data analyzed, algae 

bloom that was detected from satellite 

imaging spiked during June to August period. 

West Nile Virus cases reported for California 

also saw a peak during the October to 

December period. The consistency of this 

trend indicated that these 2-3 months are 

crucial in the surveillance of vector-borne 

diseases. While this research was limited in 

scope and time, this could be significant in 

the overall monitoring of relatively large-

scale areas’ inland water bodies and to detect 

and prevent mosquito breeding in the inland 

water bodies.  

4.2.4 Accuracy of the ML Prediction Model 

Using Naïve Bayes with the 2020 and 

2021 datasets, we achieved 67% accuracy 

with Sacramento, CA data. Accuracy slightly 

improved to 70% by combining both 

Sacramento and Fresno data. While the SVM 

prediction model gave a similar accuracy 

result, the Decision Tree machine learning 

algorithm was able to provide a nearly 100% 

accurate prediction. Due to time constraints 

and the limited cloud-free dataset available 

from Sentinel-2 for the 2020-21 summer, 

these results are indicative.  

5. Conclusion 

Both the field experiment and 

machine learning algorithms have a definite 

indication of the effect of fertilizer on algae 

blooms and the breeding of mosquitoes. 

However, this needs to be further tested with 

the larger dataset to train the prediction 

model. As a next step, cloud-free satellite 

images are to be sourced for an extended 

period (2015-2020) from multiple satellites 

(Landsat and Sentinel 2) to expand the 

dataset for training the prediction model. 

Early detection of potential breeding of 

mosquitoes could provide enough time to 

prevent a catastrophic impact of a West Nile 

Virus outbreak.  
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Supplementary Material 

1. NDCI and NDWI algorithm: python 

script 

2. Feature Extraction from Algae data, 

West Nile Virus data for training ML 

prediction model 

3. Sentinel2 MSI Images acquisition for 

Sacramento and Fresno, CA using 

Sentinelsat API in python ( 

https://scihub.copernicus.eu/dhus/#/hom

e ) 
4. California West Nile Virus Cases 

(https://data.chhs.ca.gov/dataset/west-

nile-virus-cases-2006-present ) 

5. California Harmful Algae Bloom 

Incident Reports Map ( 

https://mywaterquality.ca.gov/habs/wher

e/freshwater_events.html ) 

6. Rasterio Library in Python (GDAL and 

NumPy based)  (https://automating-gis-

processes.github.io/CSC18/lessons/L1/I

ntro-Python-GIS.html#why-python-for-

gis ) 

7. GIS Libraries in Python: 

1. Rasterio, GDAL and 

Geopandas   

8. Data analysis & visualization in Python: 

1. Numpy, Pandas, Matplotlib and 

Scikit-learn  
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