

Kingdom of Saudi Arabia

Ministry of Education

Administration of Education in Makhwah

Nawan Secondary Girls School

وزارة التعليم Ministry of Education

A study on Impacts of The Rain on Environment in Nawan Area through years 2017 and 2022

Presented By

Jood Naser Mohammed Alzahrani

То

GLOBE 2022 International Virtual Science Fair

Coordinator of Globe Program

Eida Ali Hussein Al Rashedi

Research Supervisor School Leader

Aisha Khader Mohammed Al Zaili

Abstract

Rainfall lies in the range of 229–581 mm; the average is 100–250 mm annually..The air, water and soil from two farms at Nawan were investigated. Little information is obtainable for the estimation of health effects in relation to dust storms. The tools that provided with Globe program were used to determine the properties of air, water and soil sample. The results of physical and chemical analysis of water samples confirmed that some sample of water are contaminated with nitrite and nitrate. In general, we can conclude that the rainfall has affected by the environment (water, air, soil) in Nawan, Al Makhwah area through years 2017 . and 2022

LIST OF CONTENTS

1	Abstract	2
2	Introduction	4
3	Material and methods	5
4	Results and discussion	7
5	Conclusions	16
6	Acknowledgemen ts	16
7	Badges	17
8	References	18
9	Work Plan	19

1-Introduction

Al Makhwah district is located on the coast the climate is warm in the winter and hot in the summer. Rainfall lies in the range of 229–581 mm; the average is 100– 250 mm annually. Water and vegetables are essential for the human diet; in particular provide the trace elements, whereas they are vital for good health if they come from plant or an organic source.

Little information is obtainable for the estimation of health effects in relation to dust storms. Soil particles containing contaminants are thereafter entrained into the atmosphere as dust. Humans are exposed to dusts through three main ways, ingestion, inhalation, and dermal absorption. Various types of pollutants are carried by dust storm such as pesticides, by adsorbing them on the suspended particles as well as weathering products of rocks and soils. Interaction, transport, and emission of air pollutants within the city are the pertinent reasons for the increasing air pollution problems in today's urbanized society. Wind-blown mineral dust causes varied effects on health, environment and climate. The size of the effect depends on the amount and the physical and chemical properties of atmospheric dust that are largely controlled by dust sources.

The main objective of this study is monitoring impacts of the rainfall level on air, soil and water for some farms in Nawan region through 2017 and 2022.

2- Materials and methods

2-1Description of the sampling sites

Two farms are chosen for this study located within Nawan region, Al Makhwa, Table 1. Al Makhwah is a populated place in Saudi Arabia, Asia. It is located at an elevation of 448 meters above sea level and its coordinates are 19°46'46" N and 41°26'8" E in DMS (Degrees, Minutes Seconds) or 19.7794 and 41.4356 (in decimal degrees). It is an excellent agricultural region and has many valleys. In the western part of Saudi Arabia, the main source of water or almost the single source is groundwater. The Geographic location of the Al - Makhwah city is shown in Fig. 1. .Figs (2-3) show the Geographic of different sites under study

The area of study was surveyed during 2017 and this current year 2022. The samples from the study area were collecting by the same way in 2017. Soil samples were collected by stainless steel drill under the vegetable. The soil was excavated up to 12-15 cm depth by an auger containing all layers. The water samples were collected in polyethylene bottles (1.5 liters capacity). The sample bottles were covered immediately, after water samples from groundwater wells were taken by lowering the polyethylene bottles to about 0.5 m under the water . level. The following pictures show the tests for soil

Table 1

Name and coordinates of studied farms

Farm	Name			Heigh,m				
		Latit	ude		long	itude		
Ι	Mohammed Barakat Al-Zahrani	19	32	0.53	41	07	9.25	74
2	Ahmed Ali Hassan Al-Zahrani	19	32	4.21	41	09	7.73	99

Fig. 1 Saudi Arabia map showing Makhwah city

Fig. 2 Location of Farm No. 1 (Mohammed Barakat Al-Zahrani).

Fig. 3 Location of Farm No. 5 (Ahmed Ali Hassan Al-Zahrani

Title	Pictures
1-Determination of air temperature	
2-Determination of soil temperature	
3-Humidity apparatus	

Title	Pictures	Title	Pictures
1- Soil structure		5-Quantity of rocks	
2- Soil consistency		6- Amount of carbonates	
3-Soil texture		7- The primary soil color	

Title	Pictures	Title	Pictures
4- Amount of roots		8-Secondary soil color	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
9- pH for Soil			

Title	Pictures
1-Determination of air temperature	
2-Determination of soil temperature	
3-Humidity apparatus	

	Γ		Γ
Title	Pictures	Title	Pictures
1- Soil structure		5-Quantity of rocks	
2- Soil consistency		6- Amount of carbonates	
3-Soil texture		7- The primary soil color	
4- Amount of roots		8-Secondary soil color	
9- pH for Soil			

Results and discussion

1-3Analysis of atmospheric and climate

Table 2 shows the date of investigation of atmospheric and climate in 2017 (A) and 2022 (B). As shown the current temperature change from 31.4 to30.7 °C, maximum temperature 37.9 to 30.3 °C and minimum from 25.7 to 25 °C. The humidity for all farms have 28-27 % mg/L for 2017 .while in this year 2022 the current temperature change from 30.1 to31.4 °C, maximum temperature 30.2 to 31.6 °C and minimum from 22.3 to 31.4 °C. The humidity for all farms have 25 % mg/L in average

3-3Analysis of water samples

The physical and chemical properties of collected water samples from studies farms are filled in Table 3. It is clearly shown that the water from both farms has the same Transparency. Water from farms (2) has the minimum value dissolved .oxygen

The sample from farm (1) is more alkaline water. All samples have salinity increased to 500 mg/L that make the water in suitable for domestic uses. The chemical analysis were shown that water from farm (2) have high content from .nitrite and nitrate which increase about the local standard limits for water

3-3Analysis of soil samples

Soil analysis results showed that most of the samples have a single granular structure. In addition, most samples have a color degree close to each other. All .soils have a sandy texture structure except one sample

The amount of carbonate varies from one location to another

Table 2-1

Analysis of atmospheric and climate in 2017

Fa rm	Date	Ti	Air T	emperatu °C	ure	Soil t	emperatu °C	ıre	Heat and	1	Relati	Clou	ds	
		m							humidity	y	ve			
		e	Cur rent	Maxi mum	Mini mum	Cur rent	Maxi mum	Mini mum	Ambie	II	atmos	Clo	Туре	Prop
									nt air	Humi dity,%	pheric	ud		ortio
									temper	arty, /o	pressu	cov		n
									ature,		re	er		,%
									°C		,mabr			
1	24/2/ 2017	8: 50 a m	31. 4	37.9	25.7	27. 7	32.2	26.1	35.5	28	1013	sky	Clear	0
2	17/2/ 2017	9: 05 a m	30. 7	33.3	25.0	30. 8	32.1	25.7	39.4	27	1013	nat ura 1	cirros tratus	40

Table 2-2

Analysis of atmospheric and climate in 2022

		—	Air Te °(mperatu	re	S	oil tempe °C	erature	TT / 1					
	Date	Ti		-			C		Heat and		Relativ Clouds			
		me							humidity		e			
			Curr ent	Maxi mum	Mini mum	Curr ent	Maxi mum	Mini mum	Ambie	Humid	atmosp	Clo	Ту	Propo
									nt air	ity,%	heric	ud	pe	rtion
									temper		pressur	cov		,%
									ature,		e	er		
									°C		,mabr			
١	13/2/ 2022	5:0 8 pm	30. 1	30.2	22.3	33. 7	33.7	33.6	30.7	48	994. 76	sky	Cle ar	0
		14: 08 pm												
2	18/2/ 2022	5:1 2 pm	31. 4	31.6	31.4	36. 6	36.8	36.6	31.9	42	997. 17	sky	Cle ar	0
		14: 12 pm												

Table 4-1

Physical Properties of Soil in 2017

Far				Soil	Soil	Amo	Quant	Amount	PH	Soil t	emperat	ure ,C
m	Soil	Soil col	or	consiste	textu	unt	ity of	of				
				ncy	re	of	rocks	carbona		Cur	Maxi	Min
	struct	The	Second			roots		teS		rent	mum	imu
		prima	ary soil									m
	ure	ry	color									
		soil										
		color										
1a	granul	10YR	10YR4I	Fri able	Sand	Many	Many	None	8.3	27.	32.2	26.1
	ar	314	4							7		
1b	granul	10YR	10YR6I	Friable	Sand	Many	Many	Slight	8.8			
	ar	514	4			,	,	U				
1c	granul	10YR	10YR5I	Fri able	Silt	Few	None	None	8.5			
	ar	514	4									
2a	granul	10YR	10YR4I	Firm	Sand	Many	Few	Slight	9.0	30.	32.1	25.7
	ar	414	4							8		
2b	granul	2.5Y7	2.5Y7l4	Friable	Sand	Many	None	None	8.9			
	ar	14										
2c	granul	2.5Y5	2.5Y4l4	Firm	Sand	Many	None	None	8.1			
	ar	14										

Table 4-2-1

Physical Properties of Soil in 2022

Far				Soil	Soil	Amo	Quan	Amoun	Р	Soil te	emperatu	re ,C
m	Soil	Soil co	lor	consist	text	unt	tity	t of	Н	Curr	Maxi	Mini
		The	Secon	ency	ure	of	of	carbon		ent	mum	mum
	struct	prim	dary	/		roots	rocks	ateS				
		ary	soil									
	ure	soil	color									
		color										
1a	granu	10YR	10YR5I	Friable	Silt	Few	None	None	7.	33.	33.7	33.6
	lar	4 4	4						9	7		
										'		
1b	Single	7.5Y	7.5Y4I	Loose	Silt	Few	None	None	8.			
	grain	416	6						0			
	ed											

Table 4-2-2

Physical Properties of Soil in 2022

Far				Soil	Soil	Amo	Quant	Amount	Р	Soil	temperati	ure ,C
m	Soil	Soil col	or	consiste	textu	unt	ity of	of	Н	Curre	Maxim	Minim
		The	Second	ncy	re	of	rocks	carbona		nt	um	um
	struct	prima	ary soil	1		roots		teS				
		ry	color									
	ure	soil										
		color										
2a	granul	10YR	10YR5I	Friable	Caly	Few	None	None	8.	36.6	36.8	36.6
	ar	514	4						0			
2b	Single	2.5Y4	2.5Y4l2	Loose	Silt	None	Few	None	7.			
	graine	12							3			
	d											
2c	blocky	10YR	10YR51	Friable	Caly	Many	None	Slight	8.			
		414	4						1			

1. conclusion

We can summarize some of the results as the following:-

- 1. The results of the analysis of well water showed that it contains various percentages of salinity,
- 2. The temperature and humidity of the climate have no different
- 3. The results of the analysis of well soile showed that it contains various type of particles,

Acknowledgement

The research team work extends its sincere thanks and appreciation to the Education Department in Al Makhwah for their efforts in facilitating the tasks of this team. We would also like to thank Teacher Fatima Aladwani for her help writing this research.

Badges Contact a stem specialist Communication between Cooperate schools Students Ghadi Ahmed Al-1-The teacher: Fatima Al-Contacting Professor: Fayza Zahrani and student Joud Adawani, a master's Bahri at El-Matn Intermediate Nasser Al-Zahrani and Secondary School to assist degree in Biology and a 1-Go to different farms in Biology teacher, in the Globe research translating research into the area English 2-Taking different amounts of soil 2-The teacher: Aida Al-Rashidi, the chemistry 3-Use of instruments for teacher, supervising the weather measurements experiments and research of the students 4-Conducting experiments for soil measurements at 3-School lab teacher: Alia school Al-Zahrani 5-Searching and reading 4-School Principal: Aisha about books that help in Al-Zailai provided support and assistance the research

References

[1] Ma, C. J., Kasahara, M., Höller, R., & Kamiya, T. (2001). Characteristics of single particles sampled in Japan during the Asian dust–storm period. Atmospheric environment, 35(15), 2707-2714.

[2] USEPA (2006) United States Environmental Protection Agency.

[3] Ali, M. H., & Al-Qahtani, K. M. (2012). Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. The Egyptian Journal of Aquatic Research, 38(1), 31-37.

[4] Aldjain, I. M., Al-Whaibi, M. H., Al-Showiman, S. S., & Siddiqui, M. H. (2011). Determination of heavy metals in the fruit of date palm growing at different locations of Riyadh. Saudi journal of biological sciences, 18(2), 175-180.

[1] Al-Farhan, B. S. (2013). Determination of trace elements in nutrition materials in Kingdom of Saudi Arabia. International Journal of Physical Sciences, 8(37), 1830-1835.

[2] Alshammary, S. F., & Al-Horayess, O. S. (2014). Appraisal of mineral and heavy metal contents in Peach and Grape grown at Some Major Agricultural Companies in Saudi Arabia. Oriental Journal of Chemistry, 29(4), 1515-1522.

[3] Kim, D., Chin, M., Yu, H., Eck, T.F., Sinyuk, A., Smirnov, A., Holben, B.N., 2011. Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset. Atmos. Chem. Phys. Discuss. 11, 20181–20201.

[4] Maghrabi, A., Alharbi, B., & Tapper, N. (2011). Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmospheric Environment, 45(13), 2164-2173.

[5] Suleman, N. M., Mohammad, I. A., Almesned, S. S., & Aljaghwani, A. A. (2012). Measurements of Some Trace Elements in Street Dust in Zilfi Province at Saudi Arabia Using Inductively Coupled Plasma-Mass Spectrometer. World Environment, 2(6), 135-139.

[6] Cao, Z., Yang, Y., Lu, J., & Zhang, C. (2011). Atmospheric particle characterization, distribution, and deposition in Xi'an, Shaanxi Province, Central China. Environmental Pollution, 159(2), 577-584.

[7] Al-Awadhi, J. M., & AlShuaibi, A. A. (2013). Dust fallout in Kuwait city: deposition and characterization. Science of the Total Environment, 461, 139-148.

[8] Gokhale, S., & Raokhande, N. (2008). Performance evaluation of air quality models for predicting PM 10 and PM 2.5 concentrations at urban traffic intersection during winter period. Science of the total environment, 394(1), 9-24.

[9] Xuan, J., & Sokolik, I. N. (2002). Characterization of sources and emission rates of mineral dust in Northern China. Atmospheric Environment, 36(31), 4863-4876.

[10] Li, R., Shu, K., Luo, Y., & Shi, Y. (2010). Assessment of heavy metal pollution in estuarine surface sediments of Tangxi River in Chaohu Lake Basin. Chinese Geographical Science, 20(1), 9-17.

Work Plan

The project's head, Aisha Khader Mohammed Al Zaili, distributed the work to the :team as follows

.Students collect samples from various sites over a period of days

Field studies were carried out for five different farms in the Nwan area and .measurements of different weather conditions at each site

.Test and analysis the samples (water, soil and air) on Globe program devices

Make reports about each site

Assigning the Globe program coordinator, Ida Ali Hussein Al-Rashedi, to follow up the students during the experiments on the environmental globules and to .establish sites for field studies on the school's Globe website

The project leader communicates with Teacher Fatima Aladwani to conduct some .specialized analysis, quality and consultation