

Kingdom of Saudi Arabia

Ministry of Education

Administration of Education in Makhwah

Nawan Secondary Girls School

A study on of the physics prop of the soil of The Ain Ancient Village

Presented By

Jana Ahmed Abdulla Alabdali

То

GLOBE 2022 International Virtual Science Fair

Coordinator of Globe Program

Ida Ali Hussein Al Rashedi

Research Supervisor School Leader

Aisha Khader Mohammed Al Zaili

Abstract

Reservoirs are vital to the world's economy for their role in electricity generation, flood control, water supply, and recreation, which are all dependent on water storage capacity. However, dams are effective traps of sediment, and capacity is .reduced as deltas prograde into reservoirs

Air, and soil from three area at The Ain Ancient Village were investigated. The tools that provided with Globe program were used to determine the properties of air, soil sample. The results of physical and chemical analysis of soil samples confirmed that some sample of soil are contaminated with Carbonate. In general, we can conclude the properties of the air and the soil in The Ain Ancient Village , .Al Makhwah area

۲

LIST OF CONTENTS

1	Abstract	2
2	Introduction	4
3	Material and methods	5
4	Results and discussion	7
5	Conclusions	12
6	Acknowledgemen ts	12
7	Badges	13
8	References	14
9	Work Plan	15

1-Introduction

Al Makhwah district is located on the coast the climate is warm in the winter and hot in the summer. Rainfall lies in the range of 229–581 mm; the average is 100– 250 mm annually. Water and vegetables are essential for the human diet; in particular provide the trace elements, whereas they are vital for good health if they .come from plant or an organic source

Of all the natural resources, water is unarguably the most essential and appreciated. Life began in water and spirit is nurtured by water. It is a universal solvent and as a solvent it provides the ionic balance and nutrients, which support all forms of life. Water is one of the most abundant resources on earth, covering three fourths of the

planet's surface. About 97% of the earth's water are saline water in the oceans and 3% is fresh water contained in the poles (in the form of ice), ground water, lakes and rivers, extremely valuable and with the country's rapid growth, the demand for .water is increasing

Water scarcity in Saudi Arabia is a major problem, due to the shortage of natural freshwater resources for domestic purposes. In addition, the demand for water in the Kingdom increases annually at a rate of 3% or more. In Saudi Arabia the major source of water used to meet the domestic, agricultural and industrial needs is the .ground water

As dams age they may become unsafe or no longer useful; as a result dam removal has become a viable management option in some cases. Old dams may become .structurally unsound and need to be removed for public safety reasons

In Saudi Arabia the recent source of water is dams. Dams are used to capture surface water after frequent flash floods. More than 200 dams collect an estimated 16 billion cubic feet of runoff annually in their reservoirs. This water is used for agriculture. Since no previous work has been conducted in this subject and thus no results have been published on this subject until now, this study could then serve as a guideline for further and thorough analyses of well waters in Almakhwah, the .Kingdom

٤

2- Materials and methods

2-1Description of the sampling sites

Three areas were chosen for this study located within The Ain Ancient Village region, Al Makhwa, Table 1. Al Makhwah is a populated place in Saudi Arabia, Asia. It is located at an elevation of 448 meters above sea level and its coordinates are 19°46'46" N and 41°26'8" E in DMS (Degrees, Minutes Seconds) or 19.7794 and 41.4356 (in decimal degrees). It is an excellent agricultural region and has many valleys. In the western part of Saudi Arabia, the main source of water or almost the single source is groundwater. The Geographic location of the Al - Makhwah city is shown in Fig. 1. Figs .2 show the Geographic of The Ain Ancient .Village

The area of study was surveyed during 2022. Soil samples were collected by stainless steel drill. The soil was excavated up to 12-15 cm depth by an auger containing all layers. While the dust collected from special tools. The following . pictures show the tests for soil

Table 1

Name and coordinates of studied Dam

Name	coordinates						
	Latitude			longitude			
The Ain Ancient Village	19	41	477	41	23	211	92.1

Fig. 1 Saudi Arabia map showing Al Makhwa city

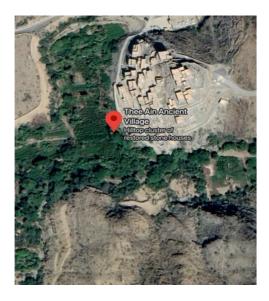


Fig. 2 Saudi Arabia map showing Deh ain vallage

Results and discussion

3-1Study Area and Sample Collection

Since no previous work has been conducted in this subject and thus no results have been published on this subject until now, this study could then serve as a guideline for further and thorough analyses of well waters in Almakhwah, the Kingdom

2-3Analysis of atmospheric and climate

Table 2 shows the date of investigation of atmospheric and climate. As shown the current temperature is 28°C, maximum temperature 30 °C and minimum is 20 °C. . % The humidity for all spots has a value 36

3-3Analysis of soil samples

Soil analysis results showed that the samples have a various structure. In addition, most samples have a color degree close to each other. All soils have a sandy .texture structure except one sample

The highest amount of carbonate was in the first sample while the second had .non

Title	Pictures
1-Determination of air temperature	
2-Determination of soil temperature	
3-Humidity app aratus	
4-Clouds	

Title	Pictures	Title	Pictures
1- Soil structure		5-Quantity of rocks	
2- Soil consistency		6- Amount of carbonates	
3-Soil texture		7- The primary soil color	
4- Amount of roots		8-Secondary soil color	
9- pH for Soil			

Table 2 Analysis of atmospheric and climate

Date	Ti	Air Temperature °C		Soil temperature °C		Heat and		Relati	Clouds	3			
	me							humidity		ve			
		Curr ent	Maxi mum	Mini mum	Curr ent	Maxi mum	Mini mum	Ambie	Hand	atmos	Clou	Тур	Propo
								nt air	Humid ity,%	pheric	d	е	rtion
								temper		pressu	cove		,%
								ature,		re	r		
								°C		,mabr			
11/2/ 2022	4:1 5 pm 13: 15 pm	28. 3	31.0	20.5	25. 2	32.6	21.2	27.9	36	928. 94	nat ural	cu mul s	50

Table 3

Physical Properties of Soil

				Soil	Soil	Amou	Quant	Amount	PH	Soil te	mperat	C, ure
	Soil	Soil col	or	consiste	textu	nt of	ity of	of		Curr	Maxi	Minim
		The	Second	ncy	re	roots	rocks	carbona		ent	mum	um
	struct	prima	ary soil	- 1				teS				
		ry soil	color									
	ure	color										
1	granul	10YR	10YR4I	Loose	Silt	Many	Many	Strong	7.4	25.2	32.6	21.2
а	ar	313	3									
1	Single	2.5Y3	2.5Y3l2	Loose	Caly	None	Many	None	7.9			
b	graine	12										
	d											

1. Conclusion

We can summarize some of the results as the following:-

1. The results of the analysis of well soile showed that it contains large deferent type with strong carbonate .

Acknowledgement

The research team work extends its sincere thanks and appreciation to the Education Department in Al Makhwah for their efforts in facilitating the tasks of this team. We would also like to thank Teacher Fatima Aladwani for providing scientific and technical support for this research.

Badges

Cooperate	Contact a stem specialist	Communication between
		schools
Students Jana Ahmed	1-The teacher: Fatima Al-	Contacting Professor: Fayza
Al-Abdali and Wejdan	Adawani, a master's	Bahri at El-Matn Intermediate
Ali Al-Zahrani	degree in Biology and a	and Secondary School to assist
	Biology teacher,	in the Globe research
1-Go to the traditional	translating research into	
to The Ain Ancient	English	
Village		
	2-The teacher: Aida Al-	
2-Taking quantities of	Rashidi, the chemistry	
water and different	teacher, supervising the	
types of soil	experiments and research	
	of the students	
3-Use of instruments		
for weather	3-School lab teacher: Alia	
measurements	Al-Zahrani	
4-Conducting	4-School Principal: Aisha	
experiments for water	Al-Zailai provided support	
and soil measurements	and assistance	
in the school		
5-Searching and reading		
about books that help		
in the research		

References

[1] Ma, C. J., Kasahara, M., Höller, R., & Kamiya, T. (2001). Characteristics of single particles sampled in Japan during the Asian dust–storm period. Atmospheric environment, 35(15), 2707-2714.

[2] USEPA (2006) United States Environmental Protection Agency.

[3] Ali, M. H., & Al-Qahtani, K. M. (2012). Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. The Egyptian Journal of Aquatic Research, 38(1), 31-37.

[4] Aldjain, I. M., Al-Whaibi, M. H., Al-Showiman, S. S., & Siddiqui, M. H. (2011). Determination of heavy metals in the fruit of date palm growing at different locations of Riyadh. Saudi journal of biological sciences, 18(2), 175-180.

[5] Al-Farhan, B. S. (2013). Determination of trace elements in nutrition materials in Kingdom of Saudi Arabia. International Journal of Physical Sciences, 8(37), 1830-1835.

[6] Alshammary, S. F., & Al-Horayess, O. S. (2014). Appraisal of mineral and heavy metal contents in Peach and Grape grown at Some Major Agricultural Companies in Saudi Arabia. Oriental Journal of Chemistry, 29(4), 1515-1522.

[7] Kim, D., Chin, M., Yu, H., Eck, T.F., Sinyuk, A., Smirnov, A., Holben, B.N., 2011. Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset. Atmos. Chem. Phys. Discuss. 11, 20181–20201.

[8] Maghrabi, A., Alharbi, B., & Tapper, N. (2011). Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmospheric Environment, 45(13), 2164-2173.

[9] Suleman, N. M., Mohammad, I. A., Almesned, S. S., & Aljaghwani, A. A. (2012). Measurements of Some Trace Elements in Street Dust in Zilfi Province at Saudi Arabia Using Inductively Coupled Plasma-Mass Spectrometer. World Environment, 2(6), 135-139.

[10] Cao, Z., Yang, Y., Lu, J., & Zhang, C. (2011). Atmospheric particle characterization, distribution, and deposition in Xi'an, Shaanxi Province, Central China. Environmental Pollution, 159(2), 577-584.

[11] Al-Awadhi, J. M., & AlShuaibi, A. A. (2013). Dust fallout in Kuwait city: deposition and characterization. Science of the Total Environment, 461, 139-148.

[12] Gokhale, S., & Raokhande, N. (2008). Performance evaluation of air quality models for predicting PM 10 and PM 2.5 concentrations at urban traffic intersection during winter period. Science of the total environment, 394(1), 9-24.

Xuan, J., & Sokolik, I. N. (2002). Characterization of sources and emission rates of

mineral dust in Northern China. Atmospheric Environment, 36(31), 4863-4876.

[13] Li, R., Shu, K., Luo, Y., & Shi, Y. (2010). Assessment of heavy metal pollution in estuarine surface sediments of Tangxi River in Chaohu Lake Basin. Chinese Geographical Science, 20(1), 9-17.

Work Plan

The project's head, Aisha Khader Mohammed Al Zaili, distributed the work to the :team as follows

.Students collect samples from various sites over a period of days

Field studies were carried out for five different farms in the Nwan area and .measurements of different weather conditions at each site

.Test and analysis the samples (water, soil and air) on Globe program devices

Make reports about each site

Assigning the Globe program coordinator, Ida Ali Hussein Al-Rashedi, to follow up the students during the experiments on the environmental globules and to .establish sites for field studies on the school's Globe website

The project leader communicates with the academic supervisor to conduct some .specialized analysis, quality and consultation