Finding Microplastics In Campus

Students : Chia-En Tsai /SU, CHIH-HUNG Teacher : Cheng-Chang Chen , Pei-Yi Bai School : Hsin Tien Senior High school Country : Taiwan Partnership

New Taipei Municipal Hsin Tien Senior High School

Introduction

Nowadays, the news reports catch the public's attention to microplastics issues. We want to know the amount of microplastics in the water on campus, such as tap water, drinking water..., and discuss the result which we found.

Observation Steps

Pull out air

Equipment

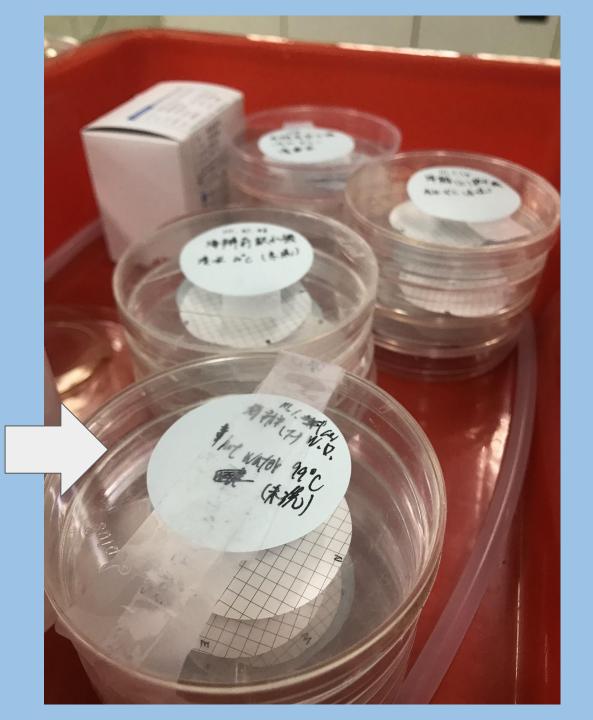
Small microscope

Research Questions

- 1) How much microplastics are in drinking water
- 2) Does the temperature of the water affect the microplastic content in the water?
- 3) Whether cleaning the water outlet of the water dispenser can reduce the microplastic content of drinking water
- 4) Will the water outlet of the water dispenser on different floors have different microplastic content due to different air turbidity?
- 5) How much microplastics everyone consumes unknowingly from drinking water every day

Hypothesis

- The content of microplastics in drinking water should not exceed 10/liter
- 2) The microplastic content of hot water may be less due to the high temperature
- 3) Cleaning the water outlet of the water dispenser can reduce the microplastics in drinking water
- **4)** The air on the lower floor may be more turbid, so the content of microplastics attached to the water outlet of the water dispenser is also more.
- 5) Women may misuse 27 microplastics per day from drinking water, compared to 37 for men(11.5 cups (2.7 liters) a day for women;15.5 cups (3.7 liters) a day for men)



- 1) Sampling 250 ml of hot water or cold water that has not been cleaned out of the water outlet.
- 2) Wash the dispenser and repeat the above actions.
- 3) Filter the sampled water with a filter bottle.
- 4) The filtered membrane is our final observation sample.
- 5) Observe the material on the filter membrane, find the microplastics and record.

Cleaning Water Dispensers

membrane

The effect of microplastics on temperature content—

Variable : Temperature

Sample	A1	A2	
Temperature	10°C	100°C	
Date	2021/12/24	2021/12/24	
Washed	NO	ΝΟ	
Filter Membrane	1	1	

CODE	GEOMETRY	COORDINATES	COLOUR	SURFACE APPEARANCE	РНОТО	OUR ASSESSMENT
1	FILAMENT	(7,-2)	UNCLEAR	ROUGH DIRTY	YES	branches
2	DOT	(1,7)	YELLOW	FLAT	YES	alga

	B	4				
CODE	GEOMETRY	COORDINATE S	COLOUR	SURFACE APPEARANCE	рното	OUR ASSESSMENT
3	FILAMENT	(2,3)	UNCLEAR BLUE	UNKNOWN	YES	TEXTILE FIBRES
4	FILAMENT	(1.5,3)	DARK BLUE	UNKNOWN	YES	TEXTILE FIBRES
5	FILAMENT	(3.5,6)	BLUE	THREAD	YES	TEXTILE FIBRES

CODE	GEOMETRY	COORDINATES	COLOUR	SURFACE APPEARANCE	OUR ASSESSMENT
1	FILAMENT	(7,-2)	UNCLEAR	ROUGH DIRTY	TEXTILE FIBRE
2	DOT	(1,7)	YELLOW	FLAT	CELLULOSE
3	FILAMENT	(2,3)	UNCLEAR BLUE	UNKNOWN	TEXTILE FIBRE
4	FILAMENT	(1.5,3)	DARK BLUE	UNKNOWN	TEXTILE FIBRE
5	FILAMENT	(3.5,6)	BLUE	THREAD	ANIMAL HAIR

A2

CODE	GEOMETRY	COORDINAT ES	COLOUR	SURFACE APPEARANCE	OUR ASSESSMENT
1	Filament	(2.5,-3)	blue	thread	Textile fibres
2	Bits of leaf	(4,6)	Brown yellow	shiny	Animal wings
3	Rubber band	(5,6)	blue	unknown	Textile fibres
4	filament	(7,-1.5)	Dark blue	unknown	Textile fibres
5	Flat particle	(-7,4)	yellow	unknown	animal

Sample	°C	washed	quantity/L
A1	10	NO	12
A2	100	NO	12

The effect of cleaning outlet holes on microplastic

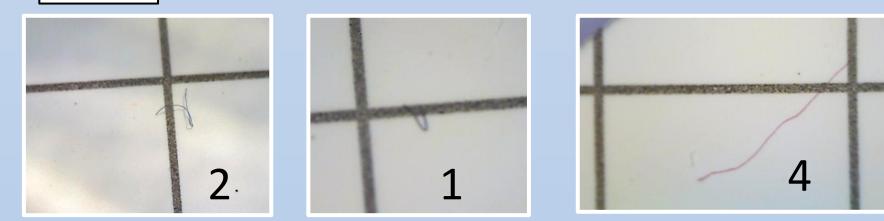
Sample number naming method:

floor(1F/2F/3F)+ cold/hot water(C/H)+ cleaned/not cleaned the water outlet(1/2)

eg: 1st floor,cold water,didn't clean the water outlet =1FC2

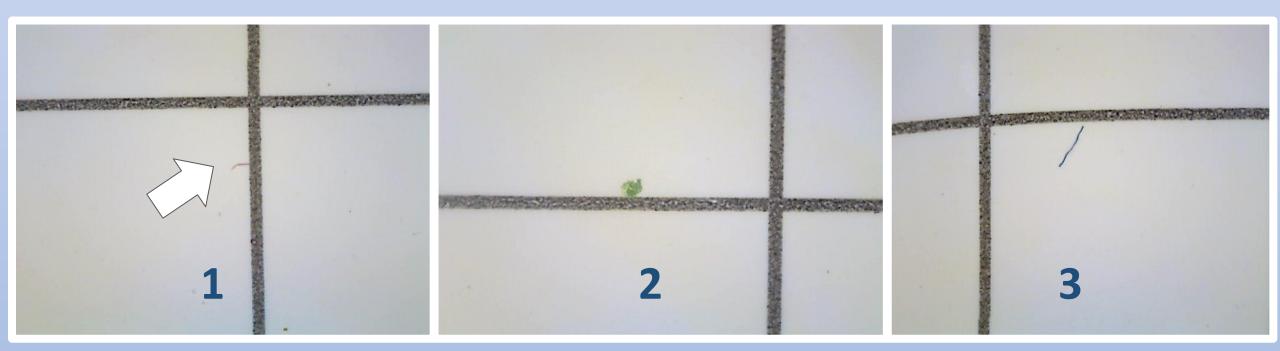
Code	1FC2	1FH2	2FC2	3FC2	3FH2
Washed	NO	NO	NO	NO	NO
Water Temperature	10°C	100°C	10°C	10°C	100°C
Date	2022/1/10	2022/1/10	2022/1/5	2022/1/10	2022/1/10
Filter Membrane	1	1	1	1	1

Code	1FC1	1FH1	2FC1	3FC1	3FH1
Washed	YES	YES	YES	YES	YES
Water Temperature	10°C	100°C	10°C	10°C	100°C
Date	2022/1/10	2022/1/10	2022/1/5	2022/1/10	2022/1/10
Fliter Membrane	1	1	1	1	1


CODE	sample	GEOMETRY	COORDINATES	COLOUR	SURFACE APPEARANCE	OUR ASSESSMENT
	1	filament	(2,7)	gray	dirty	animal hair
2FC2	2	unknown	(6,-3)	black	unknown	unknown
	3	filament	(4,0.3)	gray	unknown	unknown
2FC1	4	filament	(6,3)	blue	unknown	textiles fibres
	5	filament	(-6,1)	gray	unknown	unknown

3FC1


CODE	GEOMETRY	COORDINAT ES	COLOUR	SURFACE APPEARANCE	OUR ASSESSMENT
1	FILAMENT	(-7,3)	GRAY	UNKNOWN	
2	FILAMENT	(-5.5,5.3)	GRAY	UNKNOWN	Animal fibres
3	FILAMENT	(-3.8,6.5)	BLACK	UNKNOWN	


CODE	GEOMETRY	COORDINATE S	COLOUR	SURFACE APPEARANCE	OUR ASSESSMENT
1	FILAMENT	(2,-6)	DARK BLUE	THREAD	TEXTILE FIBRES
2	FILAMENT	(3,-5)	DARK BLUE	THREAD	TEXTILE FIBRES
3	FILAMENT	(-7,-8)	RED	THREAD	TEXTILE FIBRES
4	FILAMENT	(2.5,3.5)	RED	THREAD	TEXTILE FIBRES



CODE	GEOMETRY	COORDINATES	COLOUR	SURFACE APPEARANCE	OUR ASSESSMENT
1	filament	(7.5,6.5)	gray	unknown	Biological Filament
2	filament	(5,-7)	gray	unknown	Textile Fibres
3	filament	(-6.2,5.5)	black	unknown	Textile Fibres
4	filament	(-3.5,6)	gray	unknown	Textile Fibres

3FH2

CODE	GEOMETRY	COORDINATES	COLOUR	SURFACE APPEARANCE	OUR ASSESSMENT
1	FILAMENT	(4,2.2)	RED	UNKNOWN	TEXTILE FIBRE
2	DOT	(4.3 <i>,</i> 6)	GREEN	UNKNOWN	UNKNOWN
3	FILAMENT	(-2.25,7)	BLUE	UNKNOWN	TEXTILE FIBRE
4	DOT	(4,4)	YELLOW	UNKNOWN	UNKNOWN
5	FILAMENT	(3.5,6)	RED	UNKNOWN	TEXTILE FIBRE

				_
Sample	°C	washed	quantity/L	
2FC2	10	No	12	
2FC1	10	Yes	8 🖡	
2FH2	100	No	8	
2FH1	100	Yes	0	

Sample	°C	washed	quantity/L	
3FC2	10	No	16	
3FC1	10	Yes	12 📕	
3FH2	100	No	12	
3FH1	100	Yes	12	

Sample	°C	washed	quantity/L	
1FC2	10	No	32	
1FC1	10	Yes	32	
1FH2	100	No	36	
1FH1	100	Yes	24 📕	

Comparing the microplastic content of water dispensers on different floors

Sample	°C	washed	quantity/L
1F	10	Yes	18
2F	10	Yes	8
3F	10	Yes	6

Sample	°C	washed	quantity/L
1F	10	No	20
2F	10	No	12
3F	10	No	18

Sample	°C	washed	quantity/L
1F	100	Yes	24
2F	100	Yes	0
3F	100	Yes	18

Sample	°C	washed	quantity/L
1F	100	No	18
2F	100	No	8
3F	100	No	6

Discuss

- 1. Each control experiment was completed on the same day, humidity, air pressure, air quality... are the control variables.
- 2. In addition to whether to clean the water outlet of the water dispenser, there are many factors that affect the content of microplastics in drinking water that we have not found so far.
- 3. The higher the air turbidity, the higher the microplastics. However, from the previous arguments, it can be inferred that the content of microplastics in drinking water is not much related to the water outlet holes of the water dispenser, so this does not seem to affect the microplastics content of drinking water.
- 4. Identifying other factors that affect the level of microplastics in drinking water and finding ways to reduce the level of microplastics in drinking water are our future prospects.

Conclusion:

- ★ The average microplastic content in drinking water (including cold water, hot water, with/without wash outlet) is 13.0
- ★ The temperature of the water does not affect the microplastic content in the water
- ★ Cleaning the water outlet of the water dispenser has no obvious effect on reducing the microplastic content of drinking water
- ★ The lower the floor, the higher the microplastic content in the air, but the influence of the microplastic content in drinking water is less
- ★ Women ingested an average of 35.1 microplastics per day; men ingested an average of 48.1 microplastics per day

THANK YOU FOR LOOKING

New Taipei Municipal Hsin Tien Senior High School