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Mosquito vector-borne diseases, such as Dengue, West Nile Virus, Malaria, and Zika, pose significant
global health risks for upwards of 3.9 billion people. An essential component to limiting the spread of
mosquito vector-borne disease and assessing disease risk is the prediction of mosquito abundance. Given
the severity of mosquito-borne diseases, there is a need for intelligent and automated mosquito
abundance forecasting models. Such models would empower government and healthcare authorities to
proactively address the mosquito threat and establish long-term disease prevention strategies. This study
proposes the implementation of random forest models to predict mosquito larvae abundance in West
Africa, suitable for forecasting future mosquito vector-borne disease outbreaks. Our models leverage
remote sensing satellite data to extract features including normalized difference vegetation index
(NDVI), average rainfall, temperature, humidity, and sporadically recorded GLOBE Mosquito Habitat
Mapper (MHM) citizen science data to develop accurate predictions of mosquito population densities.
We performed a comparative analysis of random forest classifiers and random forest regressors for the
prediction of mosquito larvae counts as categories or numerical values, and determined both models to
offer practical benefits for real-world implementation in mosquito habitat forecasting. The outcomes of
our research indicate that random forest classifiers exhibit strong viability for predicting mosquito
habitats and larvae abundance, achieving an accuracy of over 85%. Whether applied to a classification
task or regression task, our work demonstrates the ability of random forest machine learning models to
effectively identify correlations between environmental variables and mosquito population
characteristics to predict mosquito abundance with high accuracy. In doing so, our research underscores
the utility of remote sensing data and machine learning models for real-world mosquito threat
management. Moreover, our results provide valuable insights for future research to address
mosquito-borne disease prevention by targeting other areas or developing mosquito surveillance
systems.

Keywords: remote sensing, random forest, mosquito abundance, NASA, GLOBE, NDVI, citizen
science, mosquito habitat, mosquito-borne disease
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RESEARCH QUESTION

This work aims to answer the following
research question: How effective are random
forest models at predicting mosquito habitats
using remote sensing environmental data?
With the global impact of mosquito vector-borne
disease, authorities need to be able to develop
proactive disease management and prevention
strategies. Investigating this research question
allows us to explore a potential solution for
forecasting mosquito larvae abundance and the
correlations that may exist among
multi-dimensional data.

1. INTRODUCTION

Mosquitos are the world’s deadliest
animal, accounting for more than 700,000 annual
deaths (Helmer, 2023). Over 200 types of
mosquitos live in the United States territories, but
only about 12 of those types can spread viruses
and parasites that cause disease. Mosquito
vector-borne diseases such as Dengue, West Nile
Virus, Zika, Yellow Fever, and Malaria are
serious public and animal health problems caused
by parasites and bacteria transmitted by
mosquitoes. Recent research suggests that global
trends, modern transportation and globalization,
urbanization, and climate change will likely
exacerbate the risks of mosquito vector-borne
disease, which has plagued living species for
generations (Gubler, 2009; Rogers & Randolph,
2006; Ryan et al., 2019). Mosquitos can thrive in
a variety of water sites, including fresh water,
polluted water, brackish water, and turbid water,
where they lay eggs that hatch into larvae (S.N.R
et al., 2011; Sutherst, 2004). For outbreaks to
occur, local vector levels need to be sufficiently
high. Therefore, the ability to predict potential

mosquito breeding sites and estimate mosquito
abundance is an essential component of assessing
disease risk (Kinney et al., 2021; Lega et al.,
2017; Ryan et al., 2006).

Citizen science is an increasingly popular
form of voluntary public participation in
scientific research to expand scientific knowledge
(Low et al., 2021). The GLOBE Observer app is a
publicly-available application that allows citizen
scientists to use their cameras to collect
observations of their environment and contribute
to the GLOBE database. GLOBE Observer is an
open data set available to scientists of all ages,
offering a way to track changes in the
environment to support Earth system science
research and satellite data (“Global Learning,”
2023). Notably, the GLOBE Observer app offers
a mosquito habitat mapper (MHM) tool for
citizen scientists to photograph and classify
mosquito larvae to add to the global database
(GLOBE, 2022).

FIG. 1. The GLOBE Mosquito Habitat Mapper
database on ArcGIS, is used to access the larvae data.

Predicting mosquito breeding sites is
complicated by global climate change and
weather factors. Previous research regarding
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mosquito risk identification identified
temperatures between 15 °C and 24 °C as
significant contributors to mosquito abundance,
with a strong positive relationship between
monthly relative humidity and mosquito larvae
(Drakou et al., 2020). The Mosquito Landscape
Simulation (MoLS), developed by Lega et al.
(2017), is a mechanistic stochastic model for
estimating Aedes aegypti mosquito abundance
based on relative humidity, precipitation, and
temperature. Their research demonstrated a
model to predict Aedes aegypti abundance in real
time using approximately a year of historical
climate data coupled with available weather
forecasts (Lega et al., 2017). Motivated by the
difficulty of scaling such a model up to a large
number of locations, Kinney et al. presented a
faster Artificial Neural Network (ANN)-based
alternative to MoLS using three base-ANN
models incorporating recurrent layers, trained on
weather time series data. Their research suggests
that the use of ANNs trained on weather and
surveillance data can effectively “contribute to
the development of probabilistic mosquito
abundance forecasting models” (Kinney et al.,
2021).

While recent research has focused on the
use of AI and modeling to develop models to
predict mosquito abundance and breeding sites,
little research has combined land cover satellite
data, remote sensing environmental data, and
mosquito habitat citizen science data as a means
to forecast mosquito abundance. In this paper, we
present a random forest analysis of classification
and regression algorithms that predict mosquito
larvae abundance in Benin, Africa.

FIG. 2. Mosquito Habitat Mapper data shows a larger
density of observations in West Africa, particularly in
Benin.

Benin was selected as an area of interest
due to the higher density of data available from
this location. The significant amount of mosquito
habitat observations from Benin demonstrates the
impact of the mosquito population in this area
and the need for effective methods for mosquito
abundance forecasting. This work seeks to
compare random forest regression and
classification for mosquito habitat prediction
using remote sensing data in Benin.

2. METHODOLOGY

2.1. Mosquito Larvae Dataset

Mosquito larvae abundance data was
obtained through the GLOBE Mosquito Habitat
Mapper program (shown in Figure 2 above), an
app-based tool where citizen scientists worldwide
can submit data on mosquito habitats. The
observations used in this study spanned from
June 14, 2018, to July 5, 2022, in Benin.
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2.2. Remote Sensing Data
The remote sensing data used in this

project included measurements of the 10-day
Normalized Difference Vegetation Index (NDVI),
10-day rainfall (RFH), relative humidity, and
temperature. NDVI and RFH data were obtained
from Benin: NDVI at Subnational Level and
Benin: Rainfall Indicators at Subnational Level
datasets through the Humanitarian Data
Exchange, a humanitarian open data sharing
platform run by the United Nations Office for the
Coordination of Humanitarian Affairs. The data
was contributed by the World Food Programme, a
humanitarian organization dedicated to fighting
hunger worldwide. The relative humidity and
temperature data were obtained from the
HadISDH dataset, a global gridded monthly mean
surface humidity dataset maintained by the Met
Office Hadley Centre (Smith et al., 2011; Willett
et. al., 2014; Willett et al., 2013).

2.3. Data Preparation

This project required the unification of
five datasets of different formats and sizes into
one dataset to train the model while still
maintaining the quality of the data. The data was
downloaded and converted into comma-separated
values (CSV) files using a NetCDF to CSV
converter.

FIG. 3. Larvae counts of 0 are
overrepresented in the data

The data was then imported into Rstudio
for combination and preprocessing. Each dataset
had all columns dropped except for the time,
main observation, and latitude and longitude
columns. After dropping unneeded information,
we standardized the date format among the
datasets to YYYY/MM/DD. Mosquito larvae
count needed to be extracted from the MHM data
because it was stored along with values for
multiple quantities in one column such as
elevation, mosquito larvae count, and water type.
After extracting the raw mosquito larvae counts,
all observations with null and undefined (-9999)
values were set to 0. The NDVI dataset had 59
observations each day every 10 days with no
geocoding so we averaged the values of each day
to create an accurate representation of the NDVI
on that day.

Once all the datasets were cleaned and
normalized we merged them using the mosquito
habitat mapper dataset as a base and attached the
corresponding measurements from each remote
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sensing dataset by matching the closest in date
and latitude and longitude.

After merging all the datasets we then
created another column for larvae abundance
tiers:

low (0): 0 - 9 larvae
medium (1): 9 - 22 larvae
high (2): 22+ larvae

Our quantity of larvae abundance for tiers was
determined based on the distribution of our MHM
data set.

Larvae Count Distribution

Min Min non-zero Max Median Average

0 10 89 0 6.83297

TABLE 1. Numerical distribution of larvae counts in
the dataset.

FIG. 4. Distribution of larvae count over time in
Benin

2.4. Random Forest Regressor

Random Forest Regressor is a powerful
machine-learning algorithm used for regression

tasks. It is an ensemble method that combines
multiple decision tree models to make accurate
predictions on continuous numeric data. The
algorithm works by creating a multitude of
decision trees during the training process and
then aggregating their predictions to obtain a
more robust and stable final output. Each decision
tree is trained on a different random subset of the
data and features, reducing overfitting and
increasing the model's generalization ability.
Random Forest Regressor is particularly useful
for handling large datasets with high-dimensional
features, and its ability to capture complex
relationships in the data makes it a versatile
choice for various regression problems.

After splitting our dataset into a training
set and testing set, we trained a baseline Random
Forest Regressor. To optimize our evaluation
metrics, we used a random grid to search for the
optimal hyperparameters after creating
RandomForestRegressor() mode. This
optimization method conducts a random search of
parameters using 3-fold cross-validation and
searches across 100 different combinations, and
uses all available cores. The optimal parameters
were the following:

{max_depth = 80, max_features = ‘auto’,
min_samples_leaf = 4, min_samples_split = 5,
n_estimators = 200}

2.5. Random Forest Classifier

Random Forest classifiers make use of a
labeled dataset where each data point is
associated with a target class label. Bootstrap
Aggregating, or Bagging, is then utilized to create
multiple random subsets within the dataset, some
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data points may be repeated, and others may be
left out. For each subset of the data, a decision
tree is built by recursively splitting the data based
on features to make decisions and predict the
target class. At each node of the decision tree,
only a random subset of features is considered for
splitting. This randomness ensures that different
trees focus on different aspects of the data,
reducing the chances of overfitting and improving
generalization. Once all the individual trees are
built, they make predictions on new data points
by “voting” for a class label, and the majority
vote is chosen as the final prediction. Once all
predictions are made, they are combined to make
the final prediction.

Random forest models include many
hyperparameters such as param_distributions or
n_iterations, that can be altered to produce a
model with a higher accuracy. Utilizing a
RandomizedSearchCV function allows us to train
many models with different parameters for each
model, and make use of the “best_estimator” and
“best_params_” attributes to respectively print
out the best accuracy achieved, along with the
parameters used to achieve it. The parameters
used were:

{'criterion': 'log_loss', 'max_depth': 118,
'min_samples_leaf': 337, 'min_samples_split':
124, 'n_estimators': 238}

2.5. Evaluation Metrics
The random forest regressor was

evaluated using the MSE, RMSE, r2, and MAE
key performance indicators (KPIs).

Mean squared error (MSE) calculates the
average of the squared difference between the
actual and predicted values:

𝑀𝑆𝐸 =  
∑[(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2]

𝑛

MSE’s are sensitive to outliers as the squared
differences inflate larger errors, posing an
advantage or a disadvantage given a specific
scenario.

Root mean squared error (RMSE)
calculates the average of the magnitude of the
errors by utilizing the MSE:

𝑅𝑀𝑆𝐸 =  𝑀𝑆𝐸

As the calculation of RMSE utilizes the MSE, it
is also sensitive to outliers, however, the square
root minimizes the impact of extreme outliers to
some extent.

R-squared (r2) or the coefficient of
determination indicates how well the regression
fits the data by representing the proportion of the
variance in the dependent variable that is
predictable from the independent variables in the
regression model:

𝑅2 =  𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙
𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

R-squared values range from 0 to 1, with higher
values indicating a better model fit.

Mean absolute error (MAE) is the
measure of the average absolute difference
between the actual values and the predicted
values. It is a lot less sensitive to outliers
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compared to KPIs such as MSE and RMSE as it
no longer squares values:

𝑀𝐴𝐸 =  
∑|𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|

𝑛

MAE is useful for error metrics that are easier to
interpret and more representative of the data as a
whole.

The random forest classifier was
evaluated using accuracy. For classification, True
positives (TP) occur when the model correctly
classified the larvae count category as it was
labeled. False positives (FP) occur when the
model classifies the larvae count category under a
label that it does not have. False negatives (FN)
occur when the larvae count category isn’t
labeled with the right label. True negatives (TN)
occur when the larvae count category is not
labeled with the wrong label.

Accuracy describes the total number of
images correctly classified:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

3. RESULTS

The results are shown in Table 2 below.
The random forest classifier performed generally
better, which was expected as the classification
task at hand involved simpler decision
boundaries, and the regression tasks required the
model to capture complex relationships between
variables to predict continuous values accurately.

Algorithm Results

Model MSE RMSE R2 MAE

RF Regressor 114.381 10.695 0.079 7.281

Accuracy

RF Classifier 0.8512

TABLE 2. Results from random forest regression and
classification.

One potential issue faced during the
training of the models was the overrepresentation
of 0 larvae counts. This overrepresentation as
well as the lack of constant data taken by MHM
plays into the sources of error which we suspect
is the primary cause of insufficient results by the
regression model. While under-sampling only
seemed to decrease the accuracy, the use of a
random_state to ensure the reproducibility of the
training and testing data split allowed us to split
the data in such a way that the imbalance was
solved to some extent.

The main difference between regression
and classification is that regression predicts
numerical larvae count values whereas
classification predicts the category of larvae
count. Because precise numbers may not be
required when assessing disease risk, an
understanding of the concentration of mosquitos,
as provided by classification, leaves room for a
range of larvae count values to be classified and
considered accurate, making this method robust
and suitable for real-world mosquito threat
management. Regression could serve to illustrate
trends in mosquito larvae counts over time,
allowing for the forecasting of potential spikes or
high-risk periods in mosquito populations.
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4. DISCUSSION

Considering the threat of vector-borne
diseases, machine learning models like the ones
we implemented in our research are vital to
forecasting disease outbreaks and developing
disease management strategies. Notably, our
results demonstrate that whether applied to a
classification or regression task, random forest
models show promise for real-world mosquito
abundance prediction, providing further evidence
that this type of model is well-suited to
identifying correlations between ecological
variables and mosquito population characteristics.
The high accuracy achieved by our models,
despite lacking consistently recorded data,
demonstrates our random forest models’ ability to
handle multi-dimensional data and effectively
predict mosquito habitats.

Although our models achieved high
accuracy, there are several limitations to be aware
of when understanding our results. Firstly, since
GLOBE Observer Mosquito Habitat Mapper data
comes from citizen scientists, the data acquired
did not come at regular or consistent time
intervals, limiting the amount of representative
data points we were able to align with
environmental sources to ultimately include in
our training dataset. Furthermore, data collection
methods may not be accurate or consistent
between volunteer observers, and it may be
important to acknowledge certain features of
observations. For example, the types of tools
available to volunteers, such as microscope
lenses, may affect the accuracy of observations,
and thus have the potential to be influencers in
our models.

Similar studies have modeled potential
mosquito habitats by examining aerial satellite
images and aquatic habitats or calculating habitat
suitability to indicate where certain mosquito
species are most likely to occur (Mushinzimana
et al., 2006; Cleckner et. al, 2011). The
integration of remote sensing environmental
variables with mosquito trap data or land cover
images highlights that our methods of leveraging
remote sensing environmental data, land cover
data, and mosquito habitat data likely reveal
important information about mosquito
abundance. While our models did not extend to
examining specific mosquito species, with
adequate data mapping mosquito species and
their habitats, our models could be adapted to
predict mosquito habitats and disease risks of
specific species.

5. CONCLUSION

Our random forest classifier optimized
with random search achieved its highest accuracy
of 85.12 %. Adopting mosquito larvae prediction
models like demonstrated could greatly enhance
mosquito vector-borne disease management, by
enabling authorities to have advanced knowledge
of mosquito risks and develop proactive strategies
for preventing disease spread. Our models could
be applied to data in other target locations to
provide accurate and relevant forecasting models
for mosquito larvae trend observation.

Our results provide valuable insights for
future research to develop surveillance systems or
alert mechanisms to aid in mosquito-borne
disease prevention efforts. In particular, future
research could experiment with other machine
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learning architectures or ensembling techniques
to achieve better results. As a note, we later tested
an AdaBoost classification model and achieved
an improved accuracy of 92.144%. Based on our
results, future work could also explore alternative
approaches for classifying larvae count into tiers,
leverage additional features such as location and
date, or integrate more mosquito datasets from
other sources such as iNaturalist, VectorSurv, or
Mosquito Alert to acquire more consistent data
for improved prediction accuracy.

DATA AND CODE

Data and code to replicate the results of
this experiment are available at the following
public Github repo:
https://github.com/rbondre25/BeninRandomFores
tAnalysis12.

GLOBE Observer data were obtained
from NASA and the GLOBE Program and are
freely available for use in research, publications,
and commercial applications. GLOBE Observer
data analyzed in this project are publicly
available at globe.gov/globe-data (accessed on 5
July 2023). The Python code to read, analyze, and
visualize GLOBE data for this article as well as
the analyzed datasets are available on
github.com/IGES-Geospatial.
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International Virtual Science Symposium
Badges

Data Science: This badge is being applied due to
the large amount of data collected from GLOBE
Observer from 2018 to 2022 in Africa. Several
data preparation techniques were utilized to
ensure quality data for analysis. We integrated
GLOBE Observer Mosquito Habitat Mapper data
with remote sensing environmental data sources
to assess the efficacy of random forest models for
predicting larvae abundance. We discuss the
limitations of our data and consider future work
relating to our data sources. We also released this
dataset to the public available at
https://github.com/rbondre25/BeninRandomFores
tAnalysis12.

Engineer: This badge is being applied for
because we evaluated our research question
through machine learning and hyperparameter
tuning to improve the performance of our models.
Our research addresses the real-world problem of
mosquito abundance forecasting and allows
communities to identify mosquito risk and
develop proactive prevention strategies.

Impact: This badge is being applied as a result of
our models being able to predict mosquito larvae
abundance. Our research enables officials within
communities to better understand mosquito
disease risk in their location and contributes to
the active prevention of mosquito epidemics
worldwide.


