AEROSOL Particles-What's all the fuss?

Why are they important?

What are they?

Where do they come from?

How are they measured?

What is AERONET all about?

-0.8

Data from thermometers.

Year

Year

IPCC-2001

ATMOSPHERIC CARBON DIOXIDE IS INCREASING

Global carbon dioxide concentration and infrared radiative forcing over the last thousand years

AEROSOLS THE "MONKEY WRENCH" OF FORCING

GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)

inferences and model evaluation.

LOSU denotes level of scientific understanding.

What is an AEROSOL particle?

- Liquid or solid particle suspended in the atmosphere
- Size: Typically 0.01 to 20 μm in diameter
- Composition:
 - Liquid: Water, sulfate, sea salt
 - Solid: Carbon, mineral (dust)
- Shape: Spherical to angular
- Types: Anthropogenic, Natural <biogenic>

Sea salt and aged sea salt Ammonium sulfates Silicates Metal oxides/hydroxides	C1+Na+S>85% S>85%, beam damage A1+Si>60% metals (AI, Ti, Mn, Fe, Cu, Ni, Zn or Pb)>80%
Calcium sulfates	Ca>30% and S>40%
Carbonates	Ca>60% and S<20%
Carbon-Rich Particles (C > 25%)	Criteria Based on Morphology, on Beam Resistance, and on Relative X-Ray Intensities (Sum of Net Counts of Elements With $6 \le Z \le 82 = 100\%$)
Soot	morphology
Biological	morphology and/or characteristic minor elements (Na, Mg, P, S, Cl, K and Ca)
Carbon/sulfate mixed particles	S>15% and/or morphology, beam damage
Cuust	rest of carbon-rich particles

Figure 1. Secondary electron images of aerosol particles: (a) silicate spheres (fly ash); (b) silicate (presumably soil material); (c) iron oxides spheres; (d) calcium sulfate; (e) carbonate; (f) sea salt; (g) biological particle; (h) carbon/sulfate mixed particles; (i) large soot agglomerate and small silicate fly ash particles (bright spheres); (j) ammonium sulfate agglomerates; (k) soot (1), ammonium sulfate (2), and carbon/sulfate mixed particles (3); (1) carbon-rich particle ($C_{\rm rest}$).

Types of Particles

University of Sao Paulo - Institute of Physics

Amazon: Biogenic Cluster

Flaming

Smoke

Smoldering

US Urban Pollution

What are the sources of aerosol particles?

- Natural (~90%)
 - Volcanoes
 - Dust storms
 - Wildfires
 - Vegetation
 - Sea spray
- Anthropogenic (~10% but mostly in N. hemisphere)
 - Industrial emissions
 - Fossil Fuel combustion
 - Land use/land cover changes

Aerosol sources-Volcanoes

- Particles and SO₂ may reach the stratosphere, 22 km
- Photo chemical conversion to SO₄ aerosols
- Transported globally, cools the surface, direct effect

Aerosol s Volca

- Particles and
- Photo chemical
- Transported g

Aerosols from Biomass Burning

Flaming Phase⇒oxygen starved, black carbon, absorbing Smoldering Phase ⇒oxygen rich combustion, non absorbing

Dust-Natural and Anthropogenic sources

Anthropogenic: Urban Aerosols

Black Carbon (highly absorbing): diesel engines, coal SO₄(small, non absorbing): factories, power plants, gas engines

Bhaskar Paul

The lives of aerosols

- Dust and sea salt spray, >1 micron radius
- Sulfate, soot and smoke generated from conversion processes, <1 micron radius, potential health issues
- Mixed and transported by atmospheric winds
- Removed by precipitation and sedimentation
- Duration 5 to 14 days
- Episodic events make prediction and global impact uncertain

Why should we care about aerosols? -the 'Direct effect'

Mediterranean coast of Turkey

Climate Change

- In the absence of clds they have a direct cooling effect reflecting sunlight back to space
- Magnitude depends on size, concentration, composition and surface reflectance
- Aerosol cooling may partially offset global CO₂ warming
- Health effects

Why should we care about aerosols? -the 'Direct effect'

Mediterranean coast of Turkey

Climate Change

- In the absence of clds they have a direct cooling effect reflecting sunlight back to space
- Magnitude depends on size, concentration, composition and surface reflectance
- Aerosol cooling may partially offset global CO₂ warming
- Health effects

Another reason we should care-the 'Indirect' effect: Modifies Clouds and Precipitation

- Without aerosols there would be few clouds
- Few aerosols, dark clds & rain
- More aerosols result in more and smaller cloud drops-less rain
- More cloud drops, brighter clouds, more sun light reflected to space

Another reason we should care-the 'Indirect' effect: Modifies Clouds and Precipitation

- Without aerosols there would be few clouds
- Few aerosols, dark clds & rain
- More aerosols result in more and smaller cloud drops-less rain
- More cloud drops, brighter clouds, more sun light reflected to space

What we don't know about aerosols?

- We don't know to what extent aerosols affect regional and global climate
- We don't know the relative magnitude of natural vs man-made aerosols on climate
- We don't know where on the planet aerosols are increasing, decreasing or are unchanged
- We don't know with certainty, if aerosols are heating or cooling the planet
- We don't know the aerosol burden over the planet at any point in time.

Sun Photometry with GLOBE and AERONET

- A direct measurement
- Relatively simple measurement
- Highly accurate

$$T = e \times \rho \left(-\frac{\beta \lambda}{\cos a}\right)$$

$$\frac{V}{V_0} = e \times \rho (-\tau M)$$

V= voltage measured

V.= voltage at TOA

l= thickness of medium

B=optical index of the material

6 = assolar zenith

T=Bl = optical thickness

M= cosa = air mass

τ_a = Aerosol Optical Thickness

$$o \quad \tau = \tau_r + \tau_w + \tau_g + \tau_a$$

- o r =Rayleigh scattering
- o w= Water vapor
- o g=gaseous absorption
- o a=Aerosols
- Ranges between 0.00 and ∞
 - o 0.05 background
 - o 1.00 is very polluted
 - o CP= Jan. 0.1, July 0.48
- Spectral
- Value depends on size of aerosols

Sun Photometry Direct Sun Radiance

(NJ-)

oltage veo sured l= thickness of medium

B=optical index of the material

G = consolar zenith

T-BR = optical thickness

M= cosa = air mass

V.= voltage at TOA

τ_a = Aerosol Optical Thickness

$$o \quad \tau = \tau_r + \tau_w + \tau_g + \tau_a$$

- o r = Rayleigh scattering
- o w= Water vapor
- o g=gaseous absorption
- o a=Aerosols
- Ranges between 0.00 and ∞
 - o 0.05 background
 - o 1.00 is very polluted
 - o CP= Jan. 0.1, July 0.48
- Spectral
- Value depends on size of aerosols

Single Scattering Albedo

$$\tau_e = \tau_\alpha + \tau_s$$

$$\omega_o = \tau_s / (\tau_\alpha + \tau_s)$$

• Range 0 to 1

(absorbing to non absorbing)

- Mid Atlantic aerosol > 0.95
- •Flaming Phase Biomass Burning, ~0.85

$$= e \times p \left(-\frac{g R}{\cos a}\right)$$
 $= e \times p \left(-\frac{g R}{\cos a}\right)$
 $= e \times p \left(-\frac{g R}{\cos a}\right)$

V.= voltage at TOA

Calibration Witage 8 10 Air Mass (cos 4) "Langky Plot"

AERONET GSFC Calibration Facility

AERONET GSFC Calibration Facility

What Does AERONET Provide?

AOD 15 minute observations

Single Scattering Albedo

AOD Climatology Anmyon, S. Korea Monthly Ave. AOD

Size Distributions

Anmyon Island, South Korea 2001 AOD>0.4 Mean of 10 almucantars / AOD level Spheroid Model Inversions Sky Error < 7%

Single Scattering Albedo

Anmyon Island, South Korea 2001 AOD>0.4 Mean of 10 almucantars / AOD level Spheroid Model Inversions Sky Error < 7%

2013- 400 active sites world wide but there is still a lot of territory to cover GLOBE can Help!

Maritime Aerosol Network as a Component of AERONET

MAN represents an important strategic sampling initiative and ship-borne data acquisition complements island-based AERONET measurements

Maritime Aerosol Network global coverage from October 2006 to May 2013

So what's the fuss summary

- What are aerosols?
 - Properties, composition, definition, shape, size
 - Natural vs Anthropogenic
- What are the source regions of aerosols?
 - Relate geography and aerosol type
 - People vs emissions
- Why are aerosols important?
 - Climate forcing
 - Health
 - Aesthetics

Summary cont.

- How are aerosols measured?
 - Active and passive systems
 - Satellite, airborne and ground-based
 - Sun Photometry-Globe

GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter

Schwartz, 1996, modified from Ramanathan, 1987

GLOBAL-MEAN RADIATIVE FORCINGS (RF) BY LONG-LIVED GREENHOUSE GASES

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)

LOSU denotes level of scientific understanding.

Total radiative forcing: $2.64 \pm 0.26 \text{ W m}^{-2}$

The global mean radiative forcing of the climate system for the year 2000, relative to 1750

Source: Summary for Policymakers, IPCC, 2001

Aerosols-general characteristics

- Ubiquitous:
 - 5 to 1000 mg/m³
- Remote sensing characteristics
 - Color: f(size and composition)
 - Directional Scattering efficiency: f(size)
 - Absorption: f(composition)
- Lifetime: 5 to 14 days (tropospheric) years (stratsopheric)