Worksheet CO₂ monitoring

Task 1: What do you think? (the part before the exploration begins)

Before exploration			After exploration	
True	False		True	False
		CO ₂ concentration has not changed throughout history.		
		The safe concentration of CO ₂ in the atmosphere is 350		
		ppm (parts per million). The actual concentration will be		
		higher.		
		The CO₂ concentration among the green plants will be		
		higher than outside the plants.		
		The amount of CO ₂ absorbed in a tree is less than the total		
		mass of the tree.		

Task 2: What happens to CO₂ in the atmosphere?

Study the infographic Evolution of CO₂ concentration in the atmosphere and complete:

Jtu	ay the imagraphic Evolution of Co2 concentration in the atmosphere and complete.			
•	In the last 800 000 years, the CO ₂ concentration has fluctuated in the range of			
	ppm, and the fluctuations corresponded to the alternation of glacial and interglacial periods (for			
	comparison: the first records of Homo sapiens are about 300,000 years old).			
•	Over the last 2000 years, until 1750 CO2 concentrations have been steadily in the			
	ppm range.			
 Since the Industrial Revolution, that is, since about 1750, CO₂ concentrations hav 				
	rapidly, reaching higher values than at any time in the last 800,000 years. Moreover, the average			
	rate of increase is also accelerating. In 2019, the CO ₂ concentration reached its highest value			
	ppm.			

Task 3: How much CO₂ is in the atmosphere today?

Measure the concentration of CO_2 in the atmosphere. Wait 90 seconds before measuring the concentration to allow the readings to settle. Then start the measurement - readings are taken every 4 seconds. After 60 seconds, stop the measurement and record the lowest and highest values in the table.

Concentration of	Place with no vegetation		Place with vegetation	
CO₂	min	max	min	max
ppm				

Task 4: How much CO₂ can a tree store?

Carbon dioxide is stored in trees by the process of photosynthesis. At the same time, they release carbon dioxide into the air through respiration. How much CO₂ is stored in a tree?

To calculate the amount of carbon dioxide in a tree, you need to measure the circumference of the tree at a height of 1.3 m from the ground and find out the height of the tree using e.g. GlobeObserver app.

Tree circumference: c = _____ cm
Tree height: h = _____ m
Calculate the diameter of the tree: $d=\frac{c}{\pi}$, π =3,14
Tree diameter: d = _____ cm

From the calculated diameter, we determine **the green weight** of the tree, which is an estimate of the weight of the tree while it is alive. As you can imagine, weighing a live tree is not feasible. For this reason, foresters use a set of formulas to estimate green weight.

Green weight	
For trees with diameter < 28 cm:	$GW = 0.0577 \times d^2 \times h$
For trees with diameter > 28 cm:	$GW = 0.0346 \times d^2 \times h$

Green weight: GW = _____ kg

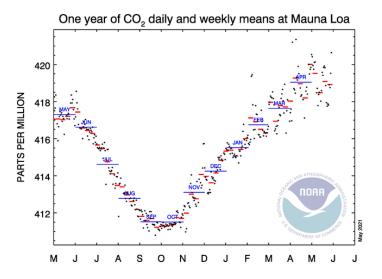
Dry weight represents the mass of the wood in the tree when dried in an oven, so the moisture is removed. On average, experiments have shown that a tree's dry weight is about 50 per cent of its green weight.

 $DW = GW \times 0.5$

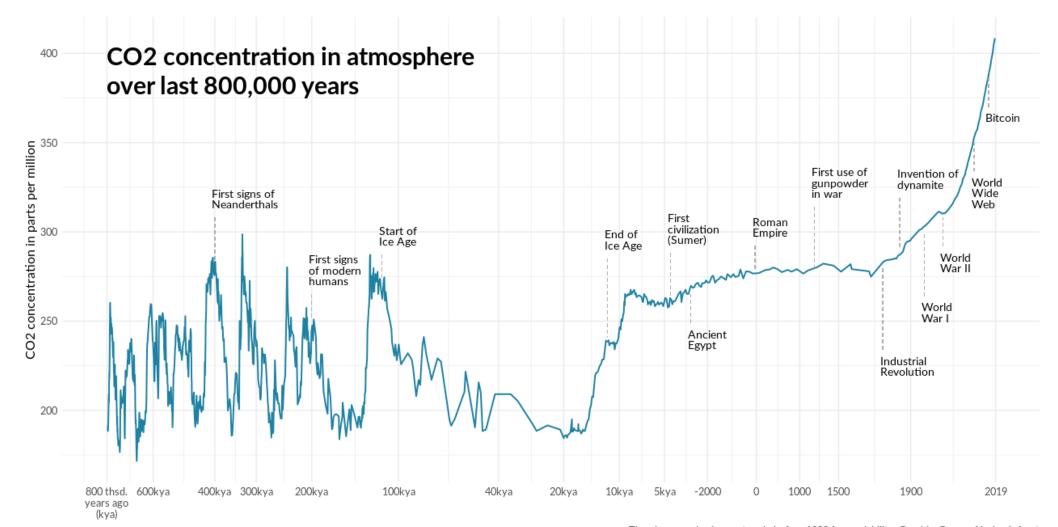
Dry weight: DW = _____ kg

Amount of carbon dioxide that has been absorbed by the tree through it's lifetime:

 $CO_2 = 1,63 \times DW$


Over its life time the tree has absorbed _____ kg of CO₂ = ____ tonne

Why is the amount of CO₂ higher than the total mass of the tree? What is the biological significance of this?


What is the difference in CO₂ released to the atmosphere as we burn the tree or let it rot?

Task 5: What happens to CO₂ during the year?

The concentration of CO2 fluctuates in a regular cycle during the year. It is the highest in May and the lowest in autumn. See the graph showing the average daily values over a one-year period (May 2020-April 2021) as measured at the Mauna Loa Observatory in Hawaii. What causes the CO₂ concentration in the atmosphere to fluctuate throughout the year?

Task 6: Were you right? Complete your card from task 1 after the exploration.

Time is warped using sqrt scale before 1900 for readability. Graphic: Gregor Aisch, vis4.net Source: NOAA (1959-today), NASA (1850-1958), Monnin et al., Petit et al., Siegenthaler et al., Luethi et al. (800kya-1850)