

HOW MUCH CARBONIS STORED MATHETRES ON OUR CAMPUS?

Anna Lamberti, Audrey Carter, Henry Anderson and Juanita Londono

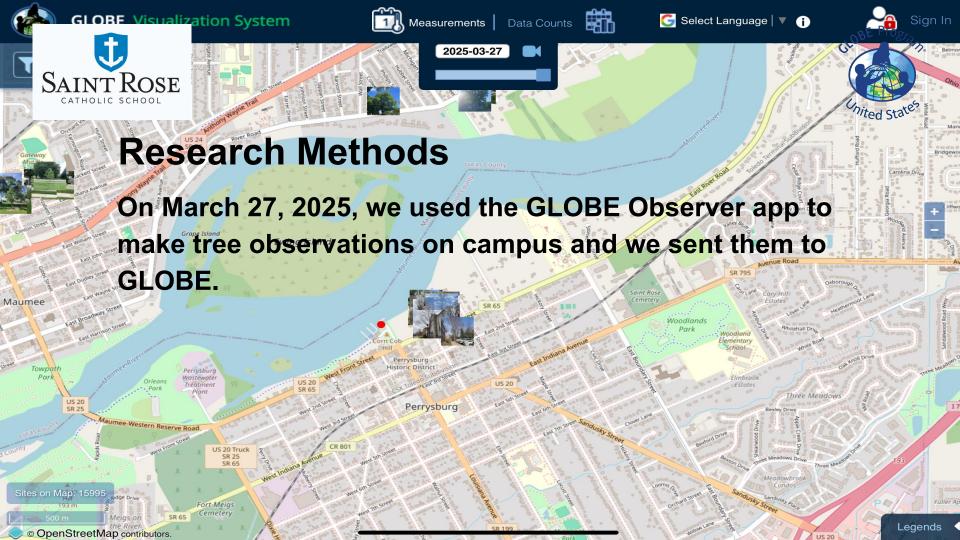
A Hood Park

Saint Rose School Perrysburg, Ohio

Introduction

We are **Henry**, **Anna**, **Juanita** and **Audrey**. We are in 7th grade at **Saint Rose School** in **Perrysburg**, **Ohio**.

It is important to study how much carbon is stored in trees because it could help with greenhouse gases and climate change.



Research Question

How much carbon is stored in the trees on our campus?

We studied the carbon cycle and learned about the importance of trees as carbon sinks to remove carbon dioxide from the atmosphere. Understanding the importance of trees in storing carbon will help us to be good stewards of our environment.

Research Methods

We measured the circumference of hardwood, deciduous trees and pine trees. And we counted the number of each type of tree.

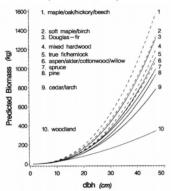
We used a spreadsheet and graph to find the biomass and carbon content for an average hardwood and average pine tree. We multiplied these values to find the total carbon stored in the trees on campus.

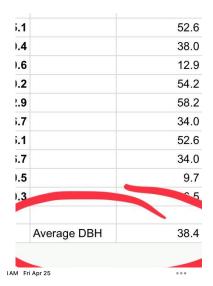
Research Methods

We used a spreadsheet and graph to find the biomass and carbon content for an average hardwood and average pine tree. We multiplied these values to find the total carbon stored in the trees on campus.

	A	В	С	D	E	
	Circumference inche	98	Circumference	cm	DBH cm	
	54		137.2		43.7	
	30		76.2		24.3	
	42		106.7		34.0	
	33		83.8		26.7	
	30.75		78.1		24.9	
	99.75		253.4		80.7	
	33		83.8		26.7	
	65		165.1		52.6	
0	58.5		148.6		47.3	
1	52		132.1		42.1	
2	13		33.0		10.5	
3	24		61.0		19.4	
4	46		116.8		37.2	
5	37		94.0		29.9	
6	84		213.4		67.9	
7	63		160.0		51.0	
В	50		127.0		40.4	
9	58		147.3		46.9	
0	59		149.9		47.7	
1	57.5		146.1		46.5	
2	53.5		135.9		43.3	
3	100		254.0		80.9	
4	12.5		31.8		10.1	
5	24		61.0		19.4	
6	65		165.1		52.6	
7	47		119.4		38.0	
8	16		40.6		12.9	
9	67		170.2		54.2	
0	72		182.9		58.2	
1	42		106.7		34.0	
2	65		165.1		52.6	
3	42		106.7		34.0	
4	12		30.5		9.7	
	8		20.3		6.5	
7				Average DBH	38.4	
6 7	8		20.3	Average DBH		

Predicted Biomass Graph (Jenkins et al., 2003)




Figure 1. Graphs of ten equations for predicting total aboveground biomass by species group. Hardwoods are represented by dashed lines, softwoods by solid lines.

Results: DBH

The average diameter at breast height (DBH) for the hardwood, deciduous trees was 38.4 cm

The average DBH for pine trees was 22.2 cm

Circumference of St Rose Trees

A	В	С	D	E
Circumference inches		Circumference cm		DBH cm
47		119.4		38.0
30		76.2		24.3
18		45.7		14.6
84		213.4		67.9
38		96.5		30.7
15		38.1		12.1
24		61.0		19.4
28		71.1		22.6
8		20.3		6.5
33		83.8		26.7
7		17.8		5.7
10		25.4		8.1
15		38.1		12.1
	Average			22.2

Results: Biomass

The average biomass for hardwood, deciduous trees was approximately 1000 kg

The average biomass for pine trees was approximately 200 kg.

Predicted Biomass Graph (Jenkins et al., 2003)

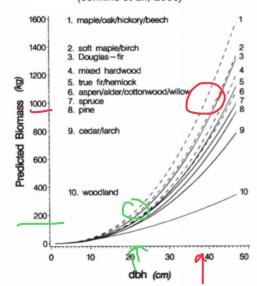


Figure 1. Graphs of ten equations for predicting total aboveground biomass by species group. Hardwoods are represented by dashed lines, softwoods by solid lines.

We counted 92 hardwood deciduous trees and 63 pine trees.

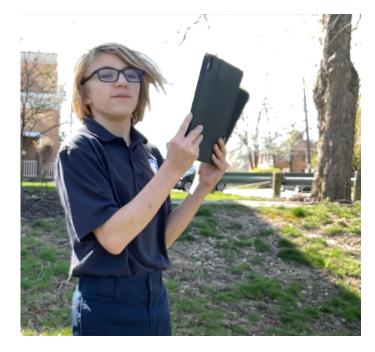
The model assumes 50% of the trees' biomass is carbon.

The trees on our campus store approximately 52,300 kg of carbon

	А	В
1	Deciduous	Pine
2	80	63
3	90	64
4	107	67
5	93	70
6	93	68
7	93	58
8	93	58
9	79	61
10	67	61
11	150	52
12	90	75
13	109	60
14	93	48
15	95	62
16	88	64
17	92	<u>63</u>

	А	В	С	D	Е	F
1	Tree type	Biomass Kg	Carbon kg	Tree count	Total carbon kg	
2	Deciduous	1000	500	92	46000	
3	Pine	200	100	63	6300	
4						
5				Total	52300	Kg

Discussion


- The trees on our campus store over 50 tonnes of carbon, which helps to offset our carbon footprints.
- We learned that trees are an important part of the carbon cycle because they remove carbon from the atmosphere and store it like a sink.
- We evaluated our carbon footprints to understand how our lifestyle affects the carbon cycle. We also researched ways to reduce our carbon footprint and how to offset our carbon footprint by planting trees.

Limitations

We had some technical difficulties with using the GLOBE OBSERVER app to make tree observations. The app froze up in the middle of taking observations for about half of the students making observations.

Next Steps

In the future, we could investigate the carbon stored in other vegetation, such as shrubs and grasses.

In the future, we could learn to identify the trees more accurately than just as hardwood deciduous or pine trees.

References

"Biometry (Including Tree Height) - Biosphere - GLOBE.gov." Globe.gov, 2025, www.globe.gov/web/biosphere/protocols/biometry-including-tree-height-.

"Carbon Cycle - Biosphere - GLOBE.gov." Globe.gov, 2025, www.globe.gov/web/biosphere/protocols/carbon-cycle.

Jenkins, Jennifer C.; Chojnacky, David C.; Heath, Linda S.; Birdsey, Richard A. 2003. National scale biomass estimators for United States tree species. Forest Science. 49: 12-35

Sara Mierzwiak, University of Toledo, GLOBE MISSION EARTH, visited and encouraged the students throughout the year.

How Much Carbon is Stored in the Trees on Campus? Saint Rose Catholic School, Perrysburg, Ohio

We learned trees are an important part of the carbon cycle because they remove carbon from the atmosphere and store it like a sink. The trees on our campus store over 50 tonnes of carbon, which helps to offset our carbon footprints.

