On October 16, 2024, I sat in a forest area at the International School of Texas, surrounded by rich, green nature. The trees overhead offered shade from the hot Texas sun. As I looked around, I saw various insects searching for food, and the outdoor classroom felt peaceful as the children played in the grass and I wondered about how this would look without human interference.

I found myself focusing on the newly fallen leaves and the roots tangled around small plants. Even though it was complex, the whole scene had a simple, calming quality. The diversity of plant leaves, each with unique markings, struck me. I also noticed how the roots of trees often go unnoticed, which reminded me how people sometimes judge others based on appearances without seeing the deeper truth. Would these small markings I noticed be different if people didn't affect the way they evolve?

This biology class has given me a new way of looking at plants. Now that I know how their cells work, I can appreciate the life inside them even more. I've realized that while we walk past plants every day, we rarely take the time to think about them deeply. Understanding more about nature helps me see things from a new perspective, and it drives me to learn even more. The Evolution of plants strikes me as wondering if these plants would appear in a different way with less human interference.

I've been thinking about ecosystems in national parks without human interference. Studies show that areas with less human activity, like Yellowstone's wilderness. In the article (National Park Service, "The Importance of Wilderness," nps.gov), Yellowstone has better conditions. For example, wilderness zones have 30% cleaner air and 40% fewer nutrients in streams than more visited areas. According to the National Academy of Sciences (Parker et al., "Human Impacts on National Parks," pnas.org), less disturbed ecosystems show a 25% increase in biodiversity and are 20% more resilient to environmental stressors. A study by Globe Science Data Visualization (Globe Science, 'Ecosystem Health and Human Influence,' globescience.org) shows how air quality and biodiversity are impacted versus pristine parks, showing the benefits of minimizing human presence in designated areas. I want to explore if this is true in other parks by comparing high-traffic areas with more untouched ones. By studying air, water, and soil health, I hope to understand how ecosystems thrive when left alone and how to protect them better.