A DYNAMICAL ANALYSIS OF KITE FLIGHT

Abstract

The mechanics of kite flying is a highly dynamic field of study due to the variability of one aspect, namely the wind. However, it is anticipated that a model of vertical kinematics may be achieved by taking data during a flight. Two teams were formed consisting of three people in order to fly a kite and gather data. Two identical kites were flown. A Kestrel Drop data logger was suspended from the line on each kite in order to collect data on temperature, relative humidity, heat stress index, dew point, station pressure, and density altitude; all with respect to time. From this data actual altitude was derived as were graphs showing the relationships between altitude and temperature. Both groups were successful in deriving a kinematic relationship for flight as a third order polynomial.

Future Plans

The Kestrel Drop proved to be a useful tool for collecting real-time data about a kite’s flight. Future flights will explore the other data available and look for relationships between altitude and relative humidity and altitude and dew point.

The only drawback noted with the Kestrel Drop was the 2 second resolution on data collection. It is predicted a more rapid approach to data collection would result in a better kinematic model. The team plans to utilize Arduinos to design specific instrumentation that may yield results with higher resolution.

Equipment

- Black carabiner to bring down kite via the string
- Yellow Safety Gloves (+1 Defense against kite string)
- Blue Kestrel Drop Data Logger
- Red plastic spool containing 500ft., 100lb. test line

The material contained in this document is based upon work supported by NASA under grant award No. NNH15ZDA004C. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.