Kite Systems for Local Scale Remote Sensing

Kay Rufty1*, Geoff Bland1, Andy Henry2, Ted Miles1+, Dave Bydlowski2, and Xavier Henry3

1NASA Goddard Space Flight Center Wallops Flight Facility 2Wayne Regional Education Service Agencies 3University of Maryland Eastern Shore *Global Science and Technology, Inc.; +Zinger Enterprizes

1. **MonoCam**

MonoCams take a timeseries of images from an altitude of between 100-500 ft. These images provide an aerial perspective of a wide variety of study regions for use in agriculture, beach erosion, etc.

Images from *MonoCams* can be stitched together to create maps over larger areas. Another application requires the manufacturer lens to be altered and replaced with a color filter to capture images that can be used to create classified images.

2. **Profiler**

The **Profiler** collects a wide variety of weather data in flight. We are able to see how the various readings change with altitude and observe a variety of natural phenomena. The following **Profiler** data shows the boundary line of the sea breeze. Sea breeze is a localized phenomenon that is caused by the difference in temperature and pressure between large bodies of water and adjacent land areas.

3. **TwinCam**

The **TwinCam** mounts a color camera and a near-IR camera side by side to capture near simultaneous images of the same study region. The images provide important information about vegetation.

Visible Image vs. Near IR image

During photosynthesis, plants absorb and reflect colors in different quantities. Because of the unique nature of plant light absorption, we are able to use the **TwinCam** and image software to create vegetation classification images. Theses images discern between different plant types and have applications in a variety of different fields, such as agriculture and invasive species management.

Education and Partnerships

The AEROKATS program partners with educators and researchers to provide a kite-based science platform for introducing learners to remote sensing and equipping researchers with a low-cost means of collecting atmospheric data and aerial images.

Education and Partnerships:

- Picavet
- MonoCam
- TwinCam
- Profiler
- VideoPod
- MiniPod

Acknowledgements

We thank the entire AREN team for their continued efforts in creating user-friendly and accessible scientific platforms and data processing tools. This program is funded under NASA Science Mission Directorate Science Education Cooperative Agreement Notice (CAN) Solicitation: NNH15ZDA004C Award Number: NNX16AB95A.