

Protocol Training Slides for: Barometric Pressure

A. What is
barometric
pressure?

B. Why collect
barometric
pressure?

C. How your
measurements
can help

D. How to
collect your data

E. Entering your
data

F. Understanding
the data

G. Quiz Yourself

H. Frequently
Asked Questions

I. Further
Resources

The Atmosphere

- Extremely thin blanket of air extending about 300 miles from Earth's surface to edge of space
- Composition of molecules of nitrogen, oxygen, argon, water vapor, carbon dioxide, and other gases
- Protection from the blasts of radiation emanating from the Sun

Image: NASA

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

This Module

Overview

This module

- Describes how to take barometric pressure observations
- Provides instructions on how to enter your data on the GLOBE website

Learning Objectives

After completing this module, you will be able to

- Describe what barometric pressure is
- List reasons why it is important to collect barometric pressure data
- Determine the correct locations to take barometric pressure readings
- Upload data to GLOBE website
- Visualize data using GLOBE Visualization Site and formulate your own questions about weather

Estimated time to complete module: 1 hour

A. What is
barometric
pressure?

B. Why collect
barometric
pressure?

C. How your
measurements
can help

D. How to
collect your data

E. Entering your
data

F. Understanding
the data

G. Quiz Yourself

H. Frequently
Asked Questions

I. Further
Resources

Barometric Pressure

- Measures the weight of the atmosphere per unit area
- Is the weight (force) of the air pushing on each unit of surface area on the ground
- Increase or decrease indicates upcoming weather change
- High pressure generally brings fair weather, and low pressure is associated with “bad weather”
- [Link to Barometric Pressure Protocol here](#)

Aerosols

Air Temperature

Albedo

Barometric Pressure

Clouds

Precipitation

Relative Humidity

Surface Ozone

Surface Temperature

Water Vapor

Wind

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Recording barometric pressure is important for many reasons:

- Used to predict the weather
- Used to interpret measurements of aerosols, ozone, and water vapor

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Your Impact

Your observations are valuable contributions to the scientific community and may be used by educators, students, researchers, and the general public to increase environmental awareness and STEM literacy, as well as advance Earth system science. Specifically, they can help the scientific community

- Understand and predict the weather (air temperature, rain, relative humidity, cloud conditions, atmospheric pressure)
- Understand Atmospheric Composition (trace gases and particles in the air)
- Interpret aerosols, ozone, and water vapor measurements

A. What is barometric pressure?

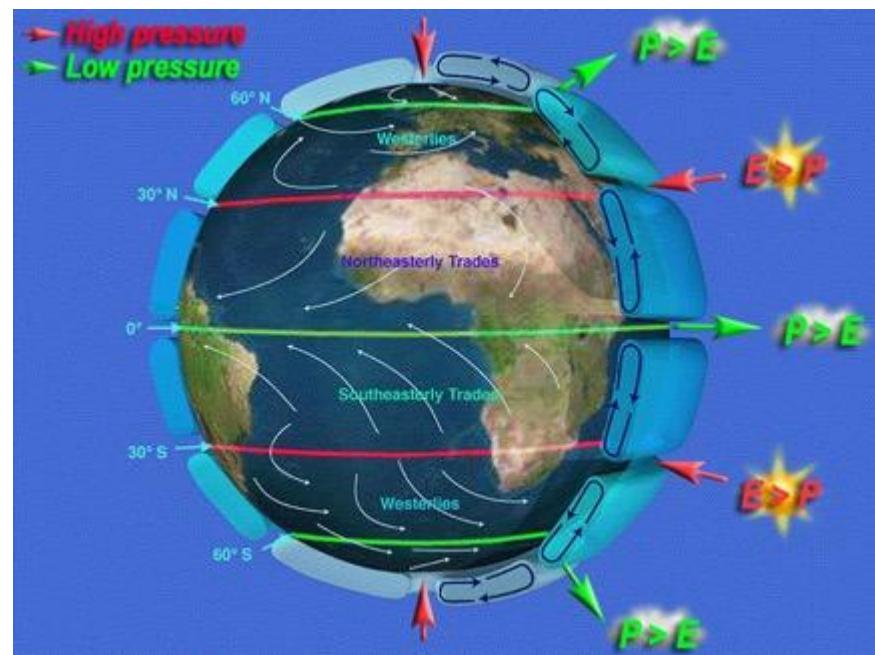
B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data


G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Example: NASA's Aquarius Mission

- Studying the relationship of ocean salinity and atmospheric pressures which vary on Earth.
- Image illustrates the pattern of atmospheric pressures on Earth. Atmospheric pressure highs are at the poles, 30°N and 30°S. Atmospheric lows are along the equator, 60°N and 60°S.
- Cloudiness and precipitation (P) dominate bands of low pressure. At these latitudes, world's rainforests are located. Dryness and evaporation (E) dominate bands of high pressure. At these latitudes, deserts are located.
- [Read more here](#)

E – Evaporation; P – Precipitation'

Image: University of Maine, Aquarius

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Protocol at a Glance

<u>Instruments</u>	Aneroid Barometer or Altimeter
<u>Data Sheet</u>	<u>Integrated 1-day Data Sheet</u>
<u>When</u>	Preferably, within one hour of <u>local solar noon</u>
<u>Where</u>	Classroom Wall at eye level
<u>Other</u>	Log book for data collection; Computer with internet connection to enter data

Aneroid Barometer

Altimeter
Use in higher elevations greater than 500 m

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Calibrating your Instrument: Aneroid Barometer

Calibration of Aneroid Barometer

- 1) Inspect your barometer; it will most likely have two different scales, one in millibars (or hectopascals) and one in millimeters (or centimeters) of mercury. All of your measurements for GLOBE should be taken in millibars or hectopascals (remember, these are equivalent).
- 2) Find a local reliable weather information source, which provides measurements of pressure. Compare to see if the readings are the same. Once you have obtained an accurate sea level pressure reading in millibars or hectopascals, reset your barometer to this pressure reading using a small set screw on the back of the barometer (this should only be done by the teacher!).
- 3) There is a needle that can be set to the current reading each day – you should do this each day after you take your pressure reading.
- 4) When you take tomorrow's reading, your barometer's set needle will read yesterday's value, and you can instantly compare to see whether pressure is higher or lower now than the day before!
- 5) Calibrate every 6 months.

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Calibrating your Instrument: Altimeter

Calibrating the Altimeter

- Most likely already calibrated by the factory.
- Pick a location where you know the altitude from a reliable source and check the setting. If different, set the altitude.

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Collecting Data-1

Read the barometer to the 0.1 millibar using the black arm. This barometer reads 1006.2 mb.

For this location, the pressure has dropped over the last 24 hours.

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Collecting Data-2

- 1) Collect data daily, preferably within one hour of local solar noon. Record the time (local or UTC) and date on the [Integrated 1-day Data Sheet](#).
- 2) Tap gently on the glass cover of the aneroid barometer to stabilize the needle.
- 3) Read the barometer to the nearest 0.1 millibar (or hectopascal).
- 4) Record this reading as the current pressure.
- 5) Set the “set needle” to the current pressure.

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Data Sheet

Enter the data on the Integrated 1-Day Data Sheet

Be sure to fill out the top:
School Name, Study Site,
Observer Names, Date and
Time (local or UTC)

[Atmosphere Data Sheet](#)

Atmosphere Investigation
Integrated 1-Day Data Sheet * Required Field

School Name: _____ Study Site: _____
Observer names: _____
Date: Year _____ Month _____ Day _____ Universal Time (hour:min): _____

Air Temperature
Current Temperature (°C): _____
Maximum Temperature (°C): _____ (record only when collected at Local Solar Noon)
Minimum Temperature (°C): _____ (record only when collected at Local Solar Noon)
Comments: _____

Barometric Pressure
(Check one): Sea Level Pressure Station Pressure
Pressure (mb): _____
Comments: _____

Relative Humidity
(Select instrument used):

<input type="checkbox"/> sling Psychrometer	<input type="checkbox"/> Digital Hygrometer
Dry bulb temperature (°C): _____	Ambient air temperature (°C): _____
Wet bulb temperature (°C): _____	Relative Humidity (%): _____

Comments: _____

Precipitation (record only when collected at Local Solar Noon)
Days of accumulation: _____
Rainfall: select one: Measurable Trace Missing
(if measurable is selected, complete the following fields)
Accumulation (mm): _____
Rain pH Measured With (check one): pH Paper pH Meter
pH of Rain: _____ (pH measurements only allowed when liquid amount is 3.5 mm or more)
Comments: _____

GLOBE® 2014 Appendix - II Atmosphere

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

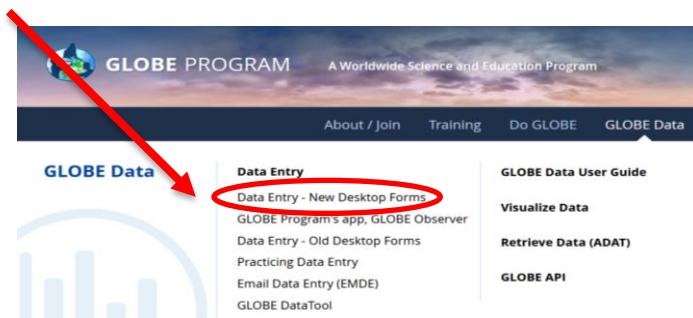
G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Entering Barometric Pressure in the GLOBE Observer Data Entry System

Two Options for Uploading Data:


These methods all allow users to submit environmental data – collected at defined sites, according to protocol, and using approved instrumentation – for entry into the official GLOBE science database.

1. Download the GLOBE Observer mobile app from the [App Store](#).
2. Data Entry: Visit globe.gov, click on the “GLOBE Data” tab, then underneath “Data Entry” click on “Data Entry – New Desktop Forms”.

Note 1: You will need a GLOBE teacher, trainer, or scientist account to submit GLOBE data.

Note 2: It may take some time after you enter your data for it to appear in the GLOBE data visualization system.

A. What is barometric pressure?

B. Why collect barometric pressure?

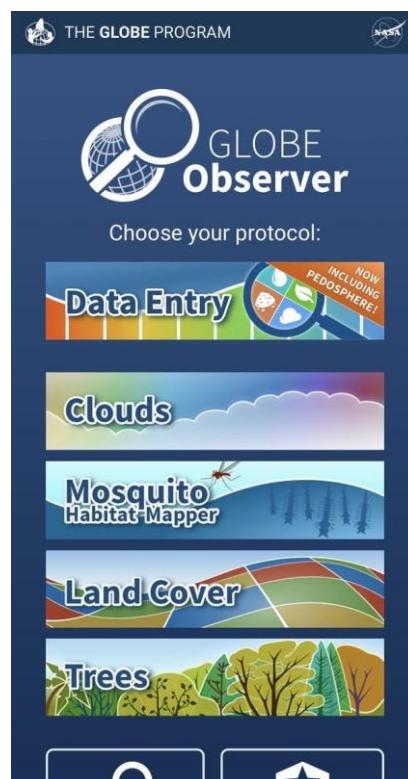
C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself


H. Frequently Asked Questions

I. Further Resources

Entering Barometric Pressure Data – Step 1&2

The steps below will walk you through entering your Atmosphere Study Site Information in the GLOBE Observer App, which you can access using your GLOBE or GLOBE Observer login.

1. Click "Data Entry"

2. Click "Create/Edit My Sites"

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Entering Barometric Pressure Data – Step 3

3. Click on the arrow next to "Atmosphere" and select "Barometric Pressure". The other necessary protocols will be automatically selected.

Select Protocols

▼ Atmosphere	1
<input type="checkbox"/> Aerosols	
<input type="checkbox"/> Air Temperature	
<input checked="" type="checkbox"/> Barometric Pressure	
<input type="checkbox"/> Clouds	
<input type="checkbox"/> Precipitation	
<input type="checkbox"/> Relative Humidity	
<input type="checkbox"/> Surface Temperature	
<input type="checkbox"/> Water Vapor	
<input type="checkbox"/> Wind	
★ Required for one or more selected protocols	
► Biosphere	0
► Hydrosphere	0
► Pedosphere	0

A. What is barometric pressure?

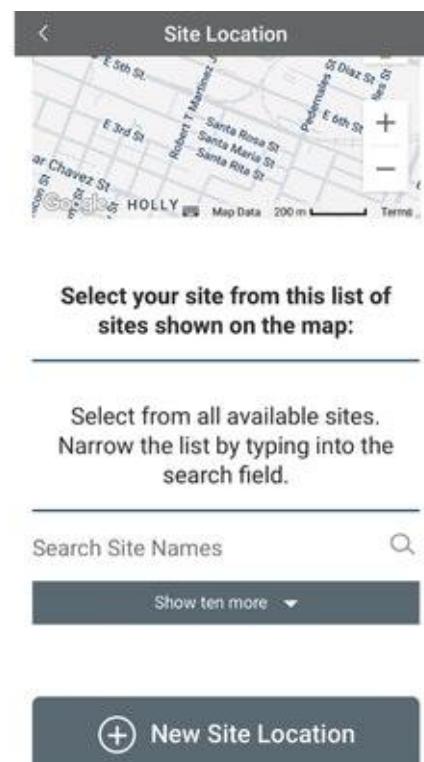
B. Why collect barometric pressure?

C. How your measurements can help

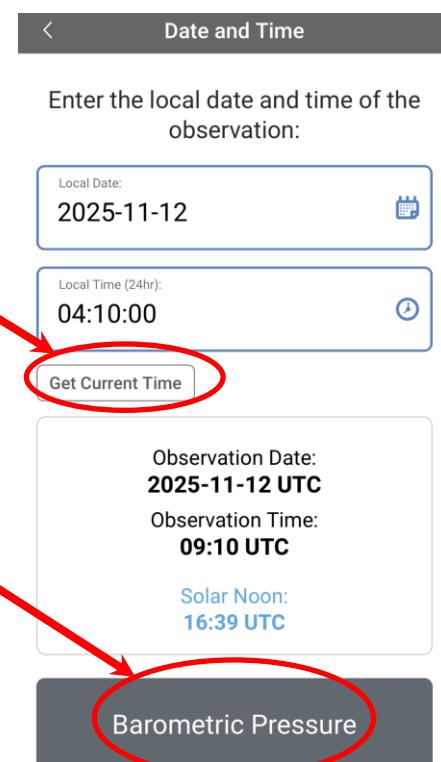
D. How to collect your data

E. Entering your data

F. Understanding the data


G. Quiz Yourself

H. Frequently Asked Questions


I. Further Resources

Entering Barometric Pressure Data – Step 4&5

4. At the bottom of the screen, click “Continue”. When prompted, enter site location details (latitude, longitude, and elevation). Choose an existing site or identify a new site by clicking “+ New Site Location”

5. Check to see if the “Date and Time” are correct, if it is not, click “Get Current Time” to update it. Then click “Barometric Pressure” to move on

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Entering Barometric Pressure Data – Step 6

6) Enter Barometric Pressure type and measurement details. Then click “Review” to view your observation summary, and then click “Finish” to submit the observation

Barometric Pressure

Select Type and Enter Measurement

Sea Level

Station Pressure

Pressure (mb): *

Comments:

Review

A. What is barometric pressure?

B. Why collect barometric pressure?

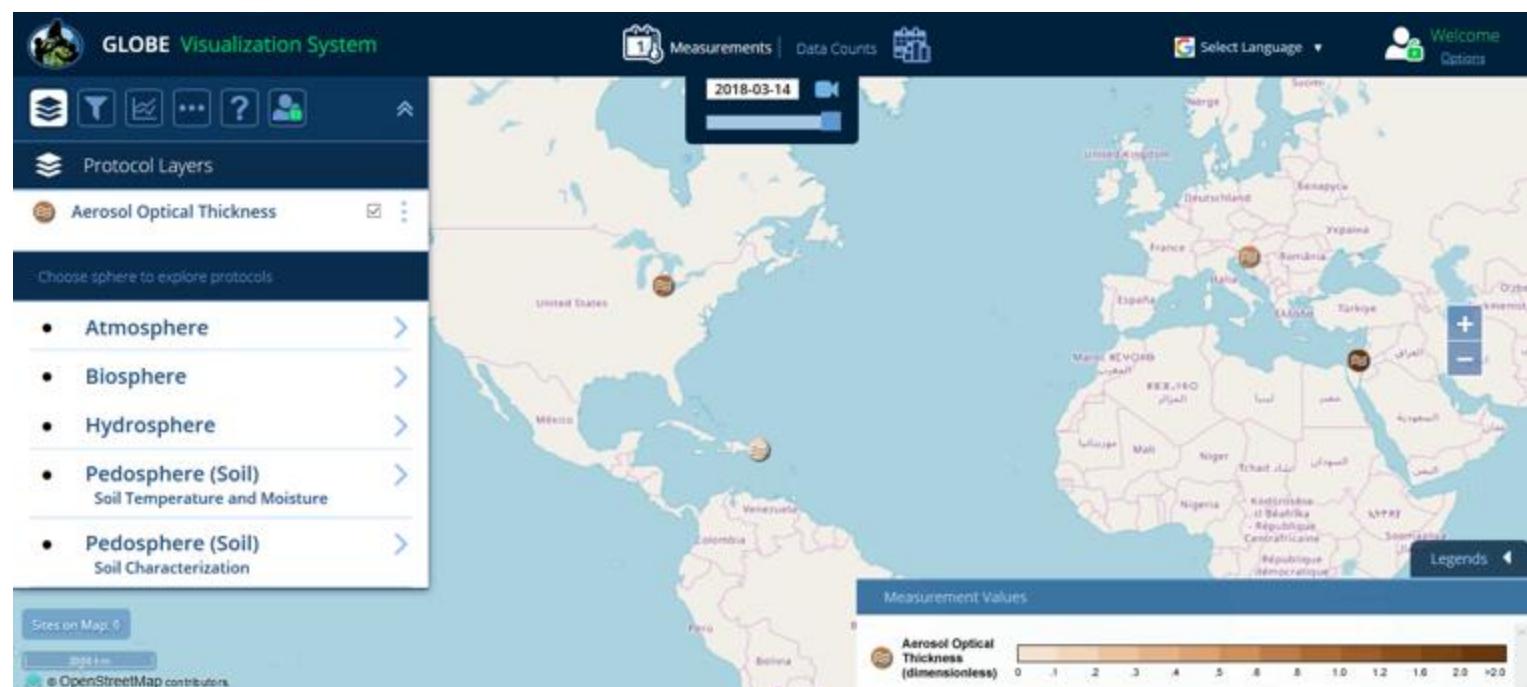
C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself


H. Frequently Asked Questions

I. Further Resources

Visualize and Retrieve Data

GLOBE provides the ability to view and interact with data measured across the world. Select our [visualization tool](#) to map, graph, filter and export data that have been measured across GLOBE protocols since 1995.

These step-by-step tutorials on using the visualization system will assist you in finding and analyzing data: [PDF version](#) [PowerPoint version](#)

<http://vis.globe.gov/GLOBE/>

A. What is barometric pressure?

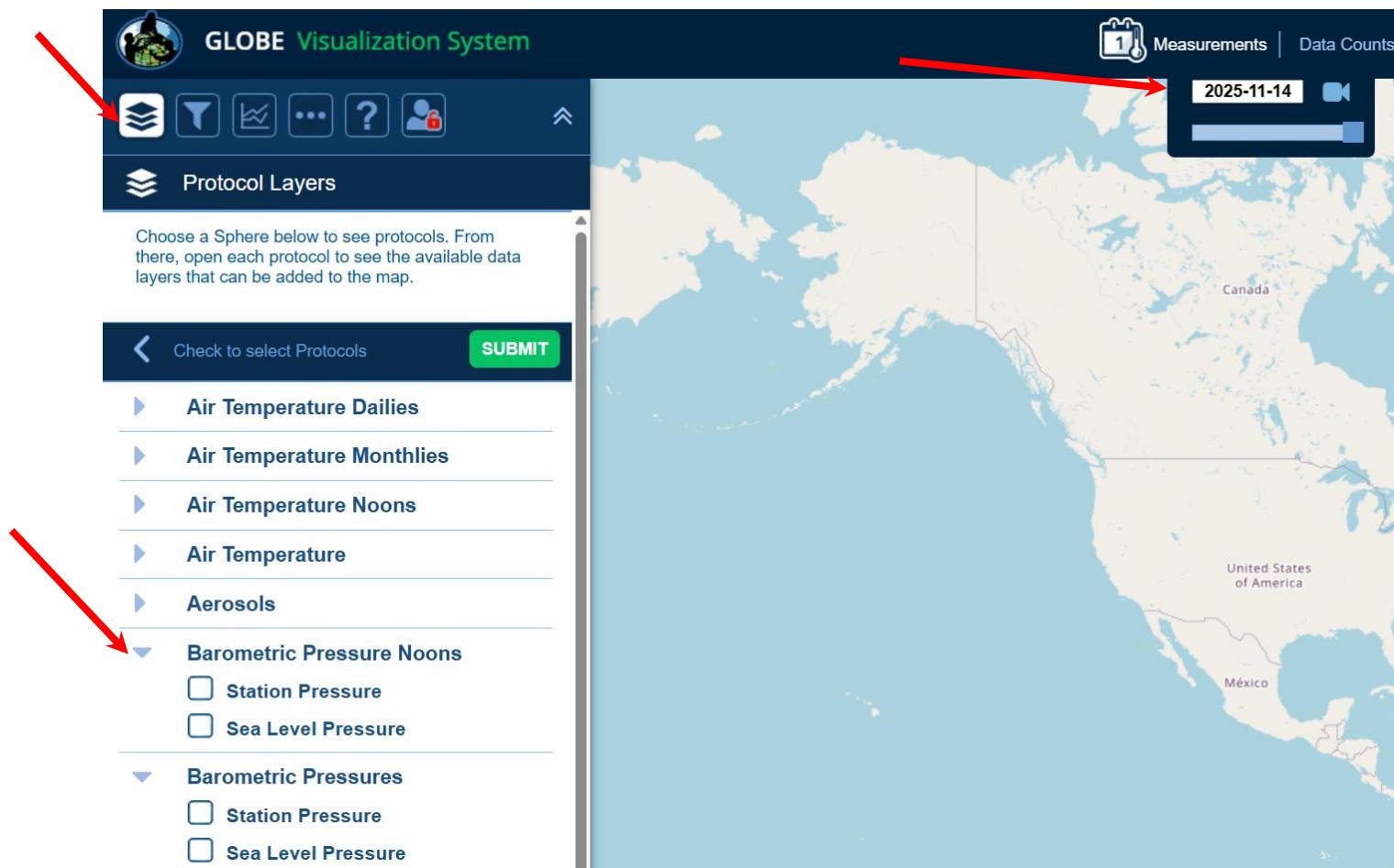
B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data


G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Visualize and Retrieve Data – Step 2

Select the date for which you need data, add the protocol layers, and you can see where data is available.

The image shows the GLOBE Visualization System interface. On the left, a sidebar titled "Protocol Layers" lists various data types. A red arrow points to the "Barometric Pressure Noons" section, which includes "Station Pressure" and "Sea Level Pressure" checkboxes. Another red arrow points to the "Barometric Pressures" section, also with "Station Pressure" and "Sea Level Pressure" checkboxes. On the right, a map of North America is displayed with data layers visible over the continent. A red arrow points to the date selector in the top right corner, which shows "2025-11-14".

GLOBE Visualization System

Protocol Layers

Choose a Sphere below to see protocols. From there, open each protocol to see the available data layers that can be added to the map.

Check to select Protocols **SUBMIT**

- Air Temperature Dailies
- Air Temperature Monthly
- Air Temperature Noons
- Air Temperature
- Aerosols
- Barometric Pressure Noons
 - Station Pressure
 - Sea Level Pressure
- Barometric Pressures
 - Station Pressure
 - Sea Level Pressure

Measurements | Data Counts

2025-11-14

Canada

United States of America

México

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Questions for YOU to Investigate

- After recording your pressure readings for a month, make a graph of your pressure observations and also plot the daily precipitation. Do you see a relationship between these observations?
- Is there any relationship between your data from the *Cloud Protocols* and barometric pressure?
- Use pressure data from several GLOBE schools adjusted to sea level pressure to see if you can locate where high and low pressure areas are for a given day. How well do your findings compare with weather maps from your local newspaper or any other source?

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

What have YOU learned?

- What is barometric pressure?
- Why is it important to collect barometric pressure data?
- What instrument(s) is/are needed to collect barometric pressure data?
- Where can I purchase the instrument(s)?
- Where should I take my barometric pressure measurements?
- What data do I need to collect?
- How do I submit my data to GLOBE?
- What can I do with the data submitted to GLOBE?

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

FAQs 1

1. If we missed reading the barometric pressure for a day or more (over the weekend, holiday, vacation, etc.), can we still report the pressure today? Yes, you are only reporting today's pressure, so please report it as often as possible.

2. I really don't understand the difference between barometric station pressure and sea level pressure.

Since weather stations are spread all over the world at many elevations, and since pressure decreases rapidly with elevation, meteorologists need a way to map horizontal pressure patterns using a constant reference altitude. The easiest way to do this is to convert all observed pressure values to sea level pressure. In GLOBE, barometric pressures are reported as sea level pressures but can be accessed and visualized as either sea level or station pressures, as the database is capable of making corrections to compensate for elevation changes.

3. Why do we have to reset the “set needle” each day?

The set needle is used to identify the previous pressure reading. Using it, you can instantly compare the current pressure reading to the previous one. For example, if the pressure is lower today than yesterday, you might ask yourself if the weather is stormier?

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

FAQs 2

6. How accurate are these pressure readings, compared to those that might be taken with mercury barometers? Today's aneroid barometers are not as accurate, in general, as well-made mercury barometers. There are some electronic barometers that have very accurate measurements, but the relatively inexpensive instruments that meet GLOBE specifications have all the necessary accuracy for our pressure measurements (about 3 to 4 mbar).

7. Why does pressure always decrease with height in the atmosphere? Because pressure is a measure of the mass of the atmosphere above you (air does have mass!), as your elevation increases, there is less air above you, so pressure is less.

8. Why do high altitude GLOBE schools have to use an altimeter? Most aneroid barometers are designed to be used near sea level. Altimeters are special aneroid barometers designed to be used at higher altitudes (including aircraft). At an altitude of 500 m above sea level, we would expect atmospheric pressure to be no greater than 1000 mbar and down to as low as 900 mbar for intense storms. Most aneroid barometers, however, have 950 mbar as the lowest possible measurement.

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

Further Resources

[GLOBE Learning Activities](#)

[My NASA Data](#)

[Information on purchasing GLOBE supplies](#)

A. What is barometric pressure?

B. Why collect barometric pressure?

C. How your measurements can help

D. How to collect your data

E. Entering your data

F. Understanding the data

G. Quiz Yourself

H. Frequently Asked Questions

I. Further Resources

We want your feedback!

Please provide us with feedback about this module. This is a community project and we welcome your comments, suggestions and edits!

Comment here: [eTraining Feedback](#)

Do you have questions? help@nasaglobe.org

Credits:

Power point Developers:

Kevin Czajkowski

Janet Struble

Mikell Lynne Hedley

Sara Mierzwiak

Photos unless otherwise identified:

Kevin Czajkowski

Funding Provided by the following organizations:

Version 1/1/26. If you edit and modify this slide set for use for educational purposes, please note "modified by (and your name and date)" on this page. Thank you

Modified by GLOBE Implementation Office – Science, Training, Education and Public Engagement