Appendix

Site Definition Sheet
Soil Characterization Data Sheet
Soil Temperature Data Sheet
Soil Moisture Site Definition Sheet
Soil Moisture - SMAP Site Definition Sheet
Soil Moisture Data Sheet – Star Pattern
Soil Moisture Data Sheet – Transect Pattern
Soil Moisture Data Sheet – Depth Profile
Soil Moisture Data Sheet - SMAP Block Pattern
Bulk Density Data Sheet
Soil Particle Density Data Sheet
Soil Particle Size Distribution Data Sheet
Soil pH Data Sheet
Soil Fertility Data Sheet
Digital Multi-Day Soil Thermometer Calibration and Reset Data Sheet
Digital Multi-Day Soil Thermometer Data Sheet
Daily Soil Moisture Sensor Data Sheet
Biannual Soil Moisture Sensor Calibration Data Sheet
Soil Infiltration Data Sheet
Textural Triangle
Glossary
Site Definition Sheet

School Name: _____________________________ Site Name: _____________________________
Choose a unique name based on location, e.g. “Grassy area - Front of School”

Names of students completing Site Definition Sheet: _____________________________________

Date: Year______ Month______ Day______ Check one: [] New Site [] Metadata Update

*Coordinates: Latitude: __________° [] N or [] S Longitude: __________° [] E or [] W
Elevation: ___ meters

*Source of Location Data (check one): [] GPS [] Other _________________________

Comments: __
__

Site Type (select all that apply based on intended measurements, then complete the necessary fields below): [] Atmosphere [] Surface Temperature [] Hydrology [] Land Cover
[] Greening [] Soil Characteristics [] Soil Moisture and Temperature

Atmosphere

List any obstacles (Check one): [] No obstacles [] Obstacles (describe below)
(Obstacles are trees, buildings, etc. that appear above 14° elevation when viewed from the site)
Description:___
__

Buildings within 10 meters of instrument shelter (Check one): [] No buildings [] Buildings (describe below)
Description:___
__

Other Site Data:

Steepest Slope: ________________ Compass Angle (facing up slope): ________________

Rain Gauge Height [] cm Ozone Clip Height [] cm Thermometer Height [] cm

*Thermometer Type (Check one):
[] Other, Soil or Air
[] Liquid-filled Max/Min (U-tube)
[] Liquid-filled, Current Temperature Only
[] Digital Single-Day Min/Max
[] Digital Multi-Day Min/Max
[] Reset Digital Multi-Day Min/Max Thermometer

Date: Year_____ Month______ Day___ Universal Time (hour:min): __________

Was this reset due to a battery change? [] Yes [] No
[] AWS WeatherBug Station (Automated Station ID _____________)
[] Davis Instrument (Davis Thermometer Type _____________)
[] Data Logger (HOBO)
[] Rainwise
[] WeatherHawk
[] No Thermometer
Surface Cover Description under instrument shelter (Check one):
- Pavement
- Bare ground
- Short grass (< 10 cm)
- Long grass (> 10 cm)
- Sand
- Roof (describe below)
- Other (describe below)

Description:__

Overall comments on the site (metadata): ____________________________________

Surface Temperature

Homogeneous site size (Select one):
- 90m x 90m
- 30m x 30m
- Smaller than 30 x 30m (specify size: ___ m x ___ m)

Cover type (Select one):
- Short grass (< 0.5m)
- Tall grass (> 0.5m)
- Barren land
- Shrubs
- Dwarf shrubs
- Concrete
- Asphalt
- Open water
- Other
- Land Cover site

Type of IRT Instrument:
- Raytech ST20
- Other (specify instrument manufacturer and model) ________________

Overall comments on the site (metadata): ____________________________________

Hydrology

Name of Body of Water: __ (the name commonly used on maps; if the body of water does not have a common name, provide a description of the water body it comes from or flows into or both.)

Water Body Type (Select one):
- Unknown
- Saltwater
- Freshwater
- Brackish

Water Body Source (Select one):

- Pond (Area of standing water ___ km²; Average Depth of Standing Water ___ m)
- Lake (Area of standing water ___ km²; Average Depth of Standing Water ___ m)
- Reservoir (Area of standing water ___ km²; Average Depth of Standing Water ___ m)
- Bay (Area of standing water ___ km²; Average Depth of Standing Water ___ m)
- Ditch (Area of standing water ___ km²; Average Depth of Standing Water ___ m)
- Ocean
- Estuary (Area of standing water ___ km²; Average Depth of Standing Water ___ m)
- Stream (Width of Moving water ___ m)
- River (Width of Moving water ___ m)
- Other (Width of Moving water ___ m; Area of standing water ___ km²; Average Depth of Standing Water ___ m)
Can you see the bottom?
☐ Yes ☐ No

Channel/Bank Material:
☐ Soil ☐ Rock ☐ Concrete ☐ Vegetated Bank

Bedrock:
☐ Granite ☐ Limestone ☐ Volcanics ☐ Mixed Sediments ☐ Unknown

Freshwater Habitats Present:
☐ Rocky Substrate ☐ Vegetated Banks ☐ Mud Substrate
☐ Sand Substrate ☐ Submersed Vegetation ☐ Logs

Saltwater Habitats Present:
☐ Rocky Shore ☐ Sandy Shore ☐ Mud Flats/Estuary

Overall comments on the site (metadata): __
__

Land Cover

MUC Description: Level 1: ___________________ Level 2: ___________________
Level 3: ___________________ Level 4: ___________________

*Note: Use the MUC Guide to determine the greatest level possible within the MUC system

*MUC Code: ______

Overall comments on the site (metadata): __
__

Greening

Are there multiple dominant species?
☐ Yes ☐ No

Primary Plant
Is this plant in the understory?
☐ Yes ☐ No

Vegetation Type (Select one):
☐ Grass Genus: ________
☐ Tree Genus: ________ Species: __________
☐ Shrub Genus: ________ Species: __________

Label: _________________________

Secondary Plant
Is this plant in the understory?
☐ Yes ☐ No

Vegetation Type (Select one):
☐ Grass Genus: ________
☐ Tree Genus: ________ Species: __________
☐ Shrub Genus: ________ Species: __________

Label: _________________________
Tertiary Plant
Is this plant in the understory? ☐ Yes ☐ No

Vegetation Type (Select one): ☐ Grass Genus: ________
☐ Tree Genus: ________ Species: __________
☐ Shrub Genus: ________ Species: __________
Label: __________________________

If additional plants will be monitored record the information on another sheet or in your Science Log.

Overall comments on the site (metadata): ___
__

Soil Characteristics

Slope angle (North, Northeast, etc.): _______

Method (select one): ☐ Soil Pit ☐ Auger Hole ☐ Near Surface ☐ Excavation
☐ Road Cut ☐ Erosion Cut

Soil Characterization Site Location (Select one): ☐ Off School Grounds
☐ On School Grounds

Land Use (Select one): ☐ Urban ☐ Agricultural ☐ Recreation ☐ Wilderness
☐ Other ______________

Landscape Position (Select one):
☐ A. Summit
☐ B. Slope
☐ C. Depression
☐ D. Large Flat Area
☐ E. Stream Bank

Cover Type (Select one): ☐ Bare Soil ☐ Rocks ☐ Grass ☐ Shrubs ☐ Trees
☐ Other ______________

Parent Material (Select one): ☐ Bedrock ☐ Organic Material ☐ Construction Material
☐ Marine Deposits ☐ Lake Deposits ☐ Stream Deposits (Alluvium) ☐ Wind Deposits (Loess)
☐ Glacial Deposits (Glacial Till) ☐ Volcanic Deposits ☐ Loose Materials on Slope (Colluvium)
☐ Don’t Know ☐ Other ______________

Distance from Major Features: _______
|----------------|---------------------|-----------------|-------------------|--|---|--|--|--|--|--|--|--|--|

* Required Field

Note: The Top Depth of any horizon must be the same depth or lower than the Bottom Depth of the horizon above it; it cannot be higher than the bottom depth above it.
Soil Moisture and Temperature

Surface State (Select one):
- Natural
- Plowed
- Graded
- Backfill
- Compacted
- Other ____________

Surface Cover (Select one):
- Bare Ground
- Short Grass (Under 10 cm)
- Long Grass (Over 10 cm)

Canopy Cover (Select one):
- Open
- Some Trees (within 30m)
- Canopy Overhead

SMAP Site Metadata

Distance to nearest rain gauge or instrument shelter: _______ m; Direction ______
Distance to nearest Soil Characterization Site: _______ m; Direction ______

Overall comments on the site (metadata): _______________________________________
__

Site Photos

(record the appropriate photo number for easy identification during data entry)

<table>
<thead>
<tr>
<th>North</th>
<th>South</th>
<th>East</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo number</td>
<td>Photo number</td>
<td>Photo number</td>
<td>Photo number</td>
</tr>
</tbody>
</table>

Overall comments on the site (metadata): _______________________________________
__
Soil Investigation
Soil Temperature Data Sheet

Study Site: __
Name of Collector/Analyst/Recorder: ________________________________
Date: ______
Soil Thermometer: Dial ______ Digital ______ Other _____
Has there been precipitation within the last 24 hours? Yes _____ No _____

Daily/Weekly Measurements

<table>
<thead>
<tr>
<th>Sample</th>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(hr) (min)</td>
<td>5 cm (°C)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diurnal Cycle Measurements

<table>
<thead>
<tr>
<th>Sample</th>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>(hr) (min)</td>
<td>5 cm (°C)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Daily Metadata/Comments:
__
__
__

GLOBE® 2014
Soil Investigation
Soil Moisture Data Sheet - Star Pattern

Study Site: ________________
Observer names: __

Date samples collected: Year: _______ Month: _______ Day: _______
Local Time: ____:___ (Hours:Min) UT: ___:____ (Hours:Min)

Current Conditions: Is surface soil saturated? ☐ Yes ☐ No
Drying Method: (check one) ☐ 95-105˚ C oven ☐ 75-95˚ C oven ☐ other ______
Average drying time: Hours/minutes_________
Bearing from Star Center (optional): _______ Distance from Star Center: _______
Observations:___
__
__
__

Near-Surface Samples:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(A-B)/(B-C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of wet soil and container (wet mass) (g)</td>
<td>Mass of dry soil and container (dry mass) (g)</td>
<td>Mass of empty container (g)</td>
<td>Soil Water Content (from calculations) (g/g)</td>
</tr>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(A-B)/(B-C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of wet soil and container (wet mass) (g)</td>
<td>Mass of dry soil and container (dry mass) (g)</td>
<td>Mass of empty container (g)</td>
<td>Soil Water Content (from calculations) (g/g)</td>
</tr>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soil Investigation
Soil Moisture Data Sheet - Transect Pattern

Study Site: ________________
Observer names: __

Date samples collected: Year: _______ Month: _______ Day: _______
Local Time: ____:___ (Hours:Min) UT: ___:____ (Hours:Min)

Current conditions: Is soil saturated? ☐ Yes ☐ No

Drying method: (check one) ☐ 95-105˚C oven ☐ 75-95˚C oven ☐ other _________
Average drying time: Hours/minutes _________

Daily Metadata: (optional)
Length of Line: ________ m Compass Bearing: ______ Station Spacing: _____ m

Directions:
Transects should be 50 m long, located in an open field. Measurements are made 12 times/yr. during a regular interval of your choice. Enter the data for your samples collected between 0-5 cm (10 single samples plus 1 triple sample):

Observations:

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Offset from end of Transect (m)</th>
<th>Container ID# (Optional)</th>
<th>Container Volume (mL)</th>
<th>Mass of wet soil and container (wet mass) (g)</th>
<th>Mass of dry soil and container (dry mass) (g)</th>
<th>Mass of empty container (g)</th>
<th>Soil Water Content (from calculations) (g/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soil Investigation
Soil Moisture Data Sheet - Depth Profile

Study Site: ____________________
Observer names: ___

Date samples collected: Year: _______ Month: _______ Day: _______
Local Time: _____:____ (Hours:Min) UT: ___:____ (Hours:Min)
Current Conditions: Is surface soil saturated? ☐ Yes ☐ No
Drying Method: (check one) ☐ 95-105˚ C oven ☐ 75-95˚ C oven ☐ other _________
Average drying time: Hours/minutes _________
Bearing from Star Center (optional): _______ Distance from Star Center: _______
Observations:___

Depth Samples:

<table>
<thead>
<tr>
<th>Sample Depth</th>
<th>Container ID#</th>
<th>Container Volume (mL) Optional</th>
<th>Mass of wet soil and container (wet mass) (g)</th>
<th>Mass of dry soil and container (dry mass) (g)</th>
<th>Mass of empty container (g)</th>
<th>Soil Water Content (from calculations) (g/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soil Investigation
Soil Moisture Data Sheet - SMAP Block Pattern

Study Site: ______________________________
Observer names: ___

Date samples collected: Date (Year-Month-Day): _______________________
Local Time: ____:____ (Hours:Min) UT: ____:____ (Hours:Min)

Drying
Is the soil saturated? □ Yes □ No
Drying Method (oven and temperature range) ___________ Drying time (hrs:min): ________

Weight Measurements

Sample 1 g

Sample 2 g

Sample 3 g

Gravimetric Soil Moisture (f)
\[\frac{c}{e} = xx \text{ g/g} \]
(Calculated value by database)

Container Volume Measurements

Container volume measurements are required at least once out of every 10 weight measurements, but can be repeated more frequently if desired. Below is your most recently measured Average Sample Volume:

Measure the Initial and Final volume of your measuring cylinder 3 times; container volume and average container volume will be calculated during data entry.

Sample 1 mL
Sample 2 mL
Sample 3 mL

(Calculated value by database)

Average Container Volume will be calculated during data entry.

Additional observations: __

GLOBE® 2014 Appendix- 12 Soil
Soil Investigation

Bulk Density Data Sheet

Note: All measurements are done without the can lid!!

Date of sample collection: Year _______ Month _______ Day _______

Study Site: __________________

Horizon Number: _______, Horizon Depth: Top _______cm, Bottom _______cm

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Container #</td>
<td>Wet mass of soil and container (g)</td>
<td>Dry mass of soil and container (g)</td>
<td>Container volume (mL)</td>
<td>Container mass (g)</td>
<td>Mass of rocks (g)</td>
<td>Volume of water without rocks (mL)</td>
<td>Volume of water with rocks (mL)</td>
<td>Mass of dry soil (g) = C-E</td>
<td>Volume of rocks (mL) = H-G</td>
<td>Bulk Density (g/mL) = (I-F)/(D-J)</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Soil Investigation
Soil Particle Density Data Sheet

Note: All measurements should be made without the stopper/cap!!

Date soil is mixed with water: year _______ month _______ day _______
Study Site: ___
Horizon number: ______________________
How has the soil been stored since it came out of the oven? _________________
Length of time since the soil was dried in the oven: ______________________
Other comments: ___

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of empty flask (g)</td>
<td>(B below)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass of soil + empty flask (g)</td>
<td>(A below)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass of water + soil + flask (g)</td>
<td>(D below)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water temperature (°C)</td>
<td>(F below)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation Worksheet

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Mass of soil + empty flask (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Mass of empty flask (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Mass of soil (g) (A - B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D Mass of water + soil + flask (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Mass of water (g) (D - A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Temperature of water (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G Density of water (g/mL) (approximately 1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H Volume of water (mL) (E/G)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Volume of soil (mL) (100 mL - H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J Soil particle density (g/mL) (C/I)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soil Investigation
Soil Particle Size Distribution Data Sheet

Date of sample collection: Year _______ Month _______ Day _______
Study Site:___
Horizon Number: _______ Horizon Depth: Top _______cm Bottom _______cm

Sample Number 1
Distance from 500 mL mark to base of graduated cylinder: _______cm
Hydrometer Calibration Temperature: _______°C
A. 2 minute hydrometer reading: _______
B. 2 minute temperature: _______°C
C. 24 hour hydrometer reading: _______
D. 24 hour temperature: _______°C

Sample Number 2
Distance from 500 mL mark to base of graduated cylinder: _______cm
Hydrometer Calibration Temperature: _______°C
A. 2 minute hydrometer reading: _______
B. 2 minute temperature: _______°C
C. 24 hour hydrometer reading: _______
D. 24 hour temperature: _______°C

Sample Number 3
Distance from 500 mL mark to base of graduated cylinder: _______cm
Hydrometer Calibration Temperature: _______°C
A. 2 minute hydrometer reading: _______
B. 2 minute temperature: _______°C
C. 24 hour hydrometer reading: _______
D. 24 hour temperature: _______°C
Soil Investigation

Soil pH Data Sheet

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>pH Measurement method (check one):</th>
<th>pH of soil and water mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[] paper [] meter</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[] paper [] meter</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[] paper [] meter</td>
<td></td>
</tr>
</tbody>
</table>

Date of sample collection: ________________ Study Site: _________________________

Horizon Number: ___________ Horizon Depth: Top _____cm, Bottom _____cm

Sample Number 1 – pH Measurement method (check one): [] paper [] meter
pH of soil and water mixture _____

Sample Number 2 – pH Measurement method (check one): [] paper [] meter
pH of soil and water mixture _____

Sample Number 3 - pH Measurement method (check one): [] paper [] meter
pH of soil and water mixture _____
Soil Investigation

Soil Fertility Data Sheet

Date of Sample Collection: __________ Study Site: __

Horizon Number: _______ Horizon Depth: Top ______ cm Bottom ______ cm

<table>
<thead>
<tr>
<th>Sample Number 1</th>
<th>Sample Number 2</th>
<th>Sample Number 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
<tr>
<td>Phosphorus (P):</td>
<td>Phosphorus (P):</td>
<td>Phosphorus (P):</td>
</tr>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
<tr>
<td>Potassium (K):</td>
<td>Potassium (K):</td>
<td>Potassium (K):</td>
</tr>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
</tbody>
</table>

Date of Sample Collection: __________ Study Site: __

Horizon Number: _______ Horizon Depth: Top ______ cm Bottom ______ cm

<table>
<thead>
<tr>
<th>Sample Number 1</th>
<th>Sample Number 2</th>
<th>Sample Number 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
<tr>
<td>Phosphorus (P):</td>
<td>Phosphorus (P):</td>
<td>Phosphorus (P):</td>
</tr>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
<tr>
<td>Potassium (K):</td>
<td>Potassium (K):</td>
<td>Potassium (K):</td>
</tr>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
</tbody>
</table>

Date of Sample Collection: __________ Study Site: __

Horizon Number: _______ Horizon Depth: Top ______ cm Bottom ______ cm

<table>
<thead>
<tr>
<th>Sample Number 1</th>
<th>Sample Number 2</th>
<th>Sample Number 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
<tr>
<td>Phosphorus (P):</td>
<td>Phosphorus (P):</td>
<td>Phosphorus (P):</td>
</tr>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
<tr>
<td>Potassium (K):</td>
<td>Potassium (K):</td>
<td>Potassium (K):</td>
</tr>
<tr>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
<td>High__ Med__ Low__ None__</td>
</tr>
</tbody>
</table>
Soil Investigation

Digital Multi-Day Soil Thermometer Calibration and Reset Data Sheet

School Name: ___________________________ Study Site: ___________________________
Observer Names: ___

Calibration

<table>
<thead>
<tr>
<th>Reading Number</th>
<th>Date (yy/mm/dd)</th>
<th>Local Time (hour:min)</th>
<th>Universal Time (hour:min)</th>
<th>Calibration Thermometer Readings (°C)</th>
<th>Digital 5 cm sensor Readings (°C)</th>
<th>Digital 50 cm Sensor Readings (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time of Reset

Note: The thermometer should be reset only when it is first setup, after the battery is changed, or if the time of local solar noon drifts to more than one hour from your time of reset.

Date: ______ Local time (Hour:Min) ______ Universal time (Hour:Min) _______
Was the reset due to a battery change? _______

5 cm Sensor Check

<table>
<thead>
<tr>
<th>Reading Number</th>
<th>Date (yy/mm/dd)</th>
<th>Local Time (hour:min)</th>
<th>Universal Time (hour:min)</th>
<th>Soil Probe Thermometer Readings at 5 cm (°C)</th>
<th>Digital 5 cm Sensor Readings (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soil Investigation
Digital Multi-Day Soil Thermometer Data Sheet

School Name: __________________________ Study Site: ______________________
Observer Names: __

Date: Year _______ Month _______ Day _______
Local time (Hour:Min)_______ Universal time (Hour:Min) _______
Your Time of Reset in universal time (Hour:Min): _______

Current Temperatures
5 cm soil temperature (°C): _____________
50 cm soil temperature (°C): _____________

Maximum, Minimum Temperatures
Do not read the thermometer within 5 minutes of your time of reset.

<table>
<thead>
<tr>
<th>Label on Digital Display Screen</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 5 cm Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum 5 cm Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 50 cm Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum 50 cm Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If you are reading thermometer AFTER your time of reset: Corresponding to 24-hour Period Ending:</td>
<td>Today</td>
<td>Yesterday</td>
<td>Two days ago</td>
<td>Three days ago</td>
<td>Four days ago</td>
<td>Five days ago</td>
</tr>
<tr>
<td>If you are reading thermometer BEFORE your time of reset: Corresponding to 24-hour Period Ending:</td>
<td>Yesterday</td>
<td>Two days ago</td>
<td>Three days ago</td>
<td>Four days ago</td>
<td>Five days ago</td>
<td>Six days ago</td>
</tr>
</tbody>
</table>
Soil Investigation

Daily Soil Moisture Sensor Data Sheet

School Name: ___

Study Site: __

Date you started to use this SWC calibration curve: ___________

Type of Sensor:
- ☐ Watermark Block/Delmhurst meter ☐ Watermark Block/Irrrometer Watermark meter
- ☐ Watermark Block/Spectrum Watchdog (logger) ☐ Other

Observations:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Soil Moisture Meter Readings (cm)</th>
<th>SWC from Calibration Curve (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Date</td>
<td>Time (UT)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calibration Curve

(.created following the *Creating a Calibration Curve Lab Guide*)

![Calibration Curve Graph](image-url)
Soil Investigation

Biannual Soil Moisture Sensor Calibration Data Sheet

School Name: ___

Study Site: ___

Drying Method (check one): 95-105 °C oven ___; 75-95 °C oven ___; other ___

Average Drying Time: _________ (hours or minutes)

Depth (Check one): □ 10 cm □ 30 cm □ 60 cm □ 90 cm

Observations:

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Data and Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td># Date Local Time (Hour:min)</td>
<td>Observers’ Names</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Soil Investigation

Biannual Soil Moisture Sensor Calibration Data Sheet – Continued

School Name: ___

Study Site: __

Depth (Check one): □ 10 cm □ 30 cm □ 60 cm □ 90 cm

Observations:

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Local Time (Hour:min)</th>
<th>Time (UT)</th>
<th>Observers’ Names</th>
<th>A. Wet Mass (g)</th>
<th>B. Dry Mass (g)</th>
<th>C. Water Mass (A-B)</th>
<th>D. Can Mass (g)</th>
<th>E. Dry Soil Mass (B-D)</th>
<th>F. Soil Water Content (C/E) Reading</th>
<th>G. Soil Moisture Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Soil Investigation
Soil Infiltration Data Sheet

Site Name: ___

Name of Collector/Analyst/Recorder: ___

Sample collection

• date: ___________
• time: _______ (hours and minutes) check one: UT____ Local ____

Distance to Soil Moisture Site _____ m

Sample Set number: _______ Width of your reference band: _____mm

Diameter: Inner Ring: ______ cm Outer Ring: _______ cm

Heights of reference band above ground level: Upper : _____ mm Lower : ______ mm

Directions:
Take 3 sets of infiltration rate measurements within a 5 m diameter area. Use a different data work sheet for each set. Each set consists of multiple timings of the same water level drop or change until the flow rate becomes constant or 45 minutes is up. Record your data below for one set of infiltration measurements you take.

The form below is setup to help you calculate the flow rate.

For data analysis, plot the Flow Rate (F) vs. Midpoint time (D).

Observations:

<table>
<thead>
<tr>
<th>A. Start</th>
<th>B. End</th>
<th>C. Interval (min) (B-A)</th>
<th>D. Midpoint (min) (A+C/2)</th>
<th>E. Water Level Change (mm)</th>
<th>F. Flow Rate (mm/min) (E/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(min) (sec)</td>
<td>(min) (sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Saturated Soil Water Content below infiltrometer after the experiment:

A. Wet Weight: _____ g B. Dry Weight: _____ g C. Water Weight (A-B): _____ g

D. Container Weight: _____ g E. Dry Soil Weight (B-D): _____ g

F. Soil Water Content (C/E) __________

Daily Metadata/Comments: (optional) ___
Soil Investigation
Textural Triangle 3
Glossary

Acid Soil
A soil that contains more hydrogen ions than hydroxide ions and therefore has a pH less than 7.0

Alluvium
Sediment transported by flowing water (e.g. a stream)

Anomaly
Something irregular or abnormal

Basic Soil
A soil that contains more hydroxide ions than hydrogen ions and therefore has a pH greater than 7.0

Blocky Structure
Irregular block-like soil peds that are usually 0.5 cm to 5.0 cm in diameter

Bulk Density
Mass of dry soil per unit volume (expressed in GLOBE as grams per cubic centimeter)

Chroma
When referenced to hue, the level of saturation of a color

Clay
A mineral particle <.002 mm in size that has a “sticky and dense” feel when moistened and rubbed between the fingers

Columnar Structure
A type of soil structure where the soil peds (or chunks) are in the shape of a column with a rounded top. Columnar structure is found in arid regions and generally ranges between 1 and 10 cm long.

Concretion
A cemented mass of a chemical compound, such as iron oxide or calcium carbonate, that can be removed intact from the soil

Consistence
How easy or hard it is for a soil ped to break apart when it is squeezed

Cryoturbation
Process of freezing, thawing, and churning of a soil

Diurnal cycle
A daily cycle, a basic repetition period of 24 hours. All processes that are dominated by the sun are diurnal. Tides, in contrast, repeat cycles twice daily.

Effervescence
The bubbling action that occurs as a gas comes out of a liquid such as when carbon dioxide gas is produced by the reaction of carbonate coatings on soil being treated with an acid like vinegar

Eluviation
The removal of materials from one horizon which are then “illuviated” or deposited into a lower horizon

Erosion
The removal and movement of soil materials by water, wind, ice, or gravity as well as by human activities such as agriculture or construction

Evaporation
Water on Earth’s surface or in the soil absorbs heat from the sun to the point that it changes from a liquid to a gas and moves into the atmosphere

Extremely Firm
A type of soil consistence in which soil peds require extreme pressure, requiring the use of a tool (e.g., a hammer), to break

Face
The way an exposed section of soil or soil profile appears

Fertility
The ability of a soil to supply the elements and compounds needed for plant growth

Fill
Soil, rock, or other material that has been added to a site for construction purposes usually to bring the surface to a certain level

Firm
A type of soil consistence in which the soil peds require significant pressure before breaking
Floury
Having the feel of finely ground flour – smooth and powdery

Free Carbonates
Carbonate materials that form coatings on soil that react with an acid, such as vinegar, to form carbon dioxide gas

Freeze-thaw
The mechanical break up of rock caused by the expansion of freezing water in cracks and crevices

Friable
A type of soil consistence in which the soil ped breaks easily when squeezed between the thumb and fore finger with a small amount of pressure

Glacial Till
Sediment deposited from a glacier

Granular Structure
Roundish soil peds with an appearance like “cookie crumbs” that are usually less than 1.0 cm in diameter

Gravimetric
Analysis of soil moisture that depends on weighing the soil in a moist and dry state and determining the difference

Ground Water
Water stored underground in a saturated zone of rock, sand, gravel or other material

Heat Capacity
The ratio of the heat required to raise the temperature of a unit volume of soil by one degree

Horizon
An individual layer within the soil which has its own unique characteristics (such as color, structure, texture, or other properties) that make it different from the other layers in the soil profile

Hue
A particular color as distinguished from other colors on the color wheel

Humus
The part of the soil profile that is composed of decomposed organic matter from dead and decaying plants and animals and is usually dark colored

Hydrometer
An instrument based on the principles of buoyancy used to measure the specific gravity of a liquid containing suspended soil particles in relation to the specific gravity of pure water at a specified temperature

Illuviation
The deposit of materials carried by water from one horizon into another within the soil (such as clay or nutrients)

Infiltration
Downward entry of water into the soil

In situ
Location at a particular site

Leaching
Removal of soluble material in solution from the soil by the movement of water through the soil

Lithosphere
The outer layer of soil and rock on a planet is called the “lithosphere” after the Greek word “lithos” meaning “stone.”

Litter
Leaves, needles, twigs, branches, stems, or fruits covering the soil from the surrounding trees in a forest

Loam
Soil that contains an approximately equal amount of sand, silt, and clay particles.

Loess
Fine sediment transported by wind

Loose
A type of soil consistence in which the soil grains do not stick to one another (i.e. structure is single grained).

Massive Structure
A structureless soil in which all soil particles are stuck together and there are no distinct peds

Metadata
Data about data. Soil moisture data requires metadata describing the vegetation cover and possible sources of water in order to be interpreted properly.
Mottles
Streaks of spots of different colors in a soil interspersed with the dominant soil color, usually indicating poor drainage

Organic Matter
Decomposed animal or plant material that is added to the soil and becomes a part of the soil profile. When it is fully decomposed and incorporated into the soil, organic matter becomes a dark, moist, nutrient rich substance called humus and the plant and animal material from which it formed can no longer be recognized

Particle Density
The mass per unit volume of soil particles, excluding pore space

Particle Size Distribution
The amount (percent) of each of sand, silt, and clay in a soil sample

Ped
An individual unit of natural soil structure or aggregation (such as granular, blocky, columnar, prismatic, or platy)

Pedosphere
The thin outer layer of the Earth which is made up of soil. The pedosphere acts as an integrator between the atmosphere, biosphere, lithosphere, and hydrosphere of the Earth.

Permafrost
A continuously frozen soil horizon

pH
Measure of the acidity of a soil

Platy Structure
Flat, plate-like soil peds

Porosity
Percentage of soil volume not occupied by solid material

Prismatic Structure
A type of soil structure in which the soil ped is in the shape of a prism, generally ranging from 1.0 – 10.0 cm

Profile
The “face” of a soil when it has been cut vertically that shows the individual horizons and soil properties with depth

Runoff
Water that falls on the land surface but does not infiltrate and therefore flows across the land surface

Sand
A mineral particle between 0.05 and 2.0 mm in size that has a “gritty” feel when moistened and rubbed between the fingers

Saturation
When the pores of a soil are completely filled with water

Single Grained Structure
A structureless soil in which each soil grain is individual and loose in the soil (i.e. there are no peds)

Silt
A mineral particle between 0.002 and 0.05 mm in size that has a “floury, smooth” feel when moistened and rubbed between the fingers

Soil Profile
The “face” of a soil when it has been cut vertically that shows the individual horizons and soil properties with depth

Soil Water Content (SWC)
A measure of how much water is present in the pores of a soil, specifically, the ratio of the mass of water to the mass of dry soil.

Structure
The shape of soil units (peds) that occur naturally in a soil horizon. Some possible soil structures are granular, blocky, prismatic, columnar, or platy. Soils can also be structureless if they do not form into peds. In this case, they may be a consolidated mass (massive) or stay as individual particles (single grained).

Subsoil
The common term for the layers beneath the topsoil

Supernatant
When soil particles are suspended and allowed to settle, the liquid above the settled soil is cleaner than the soil below
Texture
The way soil “feels” when it is squeezed between the fingers or in the hand. The texture depends on the amount of sand, silt, and clay in the sample (particle size distribution), as well as other factors (how wet it is, how much organic matter is in the sample, the kind of clay, etc.)

Topsoil
The common term for the top layer of soil

Transect
In any field (outdoor) study, a transect consists of a line of study, often divided into intervals where observations or samples are collected.

Transpiration
The transfer of water as a gas from plant leaves to the atmosphere through the stomates

Uniform
This term is used in its traditional sense when characteristics display similar properties. Two related words are homogeneous (distributed evenly) and normal (distributed about a central mean value and described by a statistical equation).

Value
When referenced to hue, an indication of the lightness of a color

Volatilization
Evaporation of water vapor or other gases from the soil

Water Erosion
The wearing away of the land surface by water creating the detachment and movement of soil from one location to another.

Wind Erosion
The wearing away of the land surface by wind creating the detachment and movement of soil from one location to another