Shrub and Sapling Protocol Standard

Purpose

Use diagonal transects to collect a subsample of shrub/sapling data, height and \# of hits (to estimate \% cover) in order to calculate biomass and carbon stock using allometric equations.

Overview

After completion of the Carbon Cycle Site Set-Up students will use scientific field methods to measure the height and percent cover of shrubs and saplings. *This can be done at the same time as the tree and herbaceous measurement if applicable.*

Student Outcomes

Students will be able to:

- Work as a team to delegate and complete field tasks
- Carry out scientific measurements using appropriate tools and their knowledge of accuracy and precision.

Questions

Content

- How are height and percent cover used to calculate carbon storage of shrubs and saplings?

Science Concepts

Grades 9-12
Scientific Inquiry

- Design and conduct a scientific investigation
- Use appropriate tools and techniques to gather, analyze, and interpret data
- Use mathematics in all aspects of scientific inquiry
NGSS (Black-covered directly, grayaddressed, but not directly covered)
- Disciplinary Core Ideas
- Gr.6-8: LS4.A
- Science and Engineering Practices
- Planning and carrying out investigations
- Using mathematics and computational thinking
- Crosscutting Concepts:
- Patterns

Time/Frequency

40 minutes (dependent on shrub abundance, travel time not included)
Should be completed eveyr year

Level

Secondary (Middle \& High School)

Materials and Tools

- Compass (1)
- 2-3 m stick marked by centimeter (1)
- Clinometer (optional see "Biosphere Investigation Instruments- Clinometer" for construction and use)
- Pencil (1)
- Shrub/Sapling Data Sheet

Prerequisites

- Develop Investigation Plan (optional)
- A Carbon Cycle Site should already be set up.
- If this group of students did not perform the sample site set up themselves be sure to visit the site and discuss how it was set up before collecting herbaceous data, see Discussion Points for Site Visit (in the Site Set-up Teacher Guide) as a guide.

Preparation

- Divide your class into groups. [Recommended: one shrub group to complete measurements while other students take tree and/or herbaceous measurements. Or create four groups, one for each quadrant transect - in this case you will need 4 of each tool or will need to complete the transects at times that do not overlap]
- Review and make copies of the Shrub/ Sapling Measurements - Student Field Guide and Shrub/Sapling Data Sheet

What To Do and How To Do It

PREPARE TO GO OUTSIDE Grouping: Small Groups Time: 15 Minutes

- Review expected student behavior while in the field.
- Divide into Teams.
- Students gather field materials and tools.
- Students review the Standard Shrub/Sapling Measurements - Student Field Guide and Shrub/Sapling Data Sheet and ask questions.

SHRUB/SAPLING FIELD TASKS Grouping: Small Groups Time: 40 Minutes

- Students should follow the procedures for each task in their Field Guide.

NOTES:

- This can be done in conjunction with tree and/or herbaceous measurements. It can also be completed at the same time as the GLOBE Landcover Canopy Cover and Ground Cover protocol if also performing the biometry protocols to determine MUC.

CALCULATE VARIABLES (optional) Grouping: Small Groups Time: 20 Minutes

- The GLOBE Data Entry form will perform all necessary calculations. However, if you would like your students to get more practice using equations and making calculations, have them calculate deciduous \%cover, evergreen \%cover, deciduous average height, and evergreen average height (the variables needed for the allometric equations) using the equations on the Shrub/Sapling Calculations worksheet at the end of this Teacher Guide.

Resources

- Carbon Cycle eTraining: www.globe.gov/ get-trained/protocol-etraining/etraining-modules/ $16867717 / 3099387$

Shrub/Sapling Measurements- Standard Site- Student Field Guide

Shrub/Sapling Team-2-3 people

Task

Use diagonal transects to collect a subsample of shrub/sapling data, height and \# of hits (to estimate \% cover) in order to calculate biomass and carbon stock using allometric equations.

Definitions

- Shrub = a woody plant with multiple stems
- Sapling $=$ a tree $<15 \mathrm{~cm} \mathrm{CBH}$

Materials

\square Compass
2-3 m stick marked by centimeter

- Clinometer (optional)
\square Pencil
\square Calculator (optional)
- Shrub/Sapling Data Sheet

Procedure

1. Select one team member to stand at the center of the sample site with the compass. This person will keep other team members on the correct azimuth (diagonal transect), heading toward one of the sample site corners: NE, SE, SW, or NW.
2. Choose a team member to pace. The pacer should take 1 pace (two steps) and place the measuring
 stick straight down.
3. The data recorder should record the following in column 2 of the Shrub/Sapling Data Sheet:
'H' (for 'Hit') if it is touching a shrub or sapling (go to step 5)
' M ' (for 'Miss') if it is not touching a shrub or sapling (leave the other columns blank, return to step 3)
4. If you recorded 'H' in column 2, in column 3 of the Standard Shrub/Sapling Data Sheet record:
' E ' if the species is an Evergreen
' D ' if the species is Deciduous
5. Use the measuring stick to measure a representative height of the whole shrub/sapling and record it in column 4 of the Standard Shrub/Sapling Data Sheet.
6. Repeat steps 3-5 until you reach the corner.
7. Return to the center of the site and repeat steps 3-6 until all four directions have been measured.
8. If your teacher directs you to, use the Shrub/Sapling Calculations Sheet.
9. If your teacher directs you to, enter your data on the GLOBE website. The number of hits of deciduous and evergreen shrubs will be converted to percent cover. Percent cover and average shrub height will be used in allometric equations to determine biomass and carbon stock of shrubs/saplings on your sample site.

What do I do if...

...the shrub or sapling is taller than the height of the meter stick?
Option 1. Set the meter stick next to the shrub as a reference, and estimate the height. Option 2. Use a clinometer following the instructions given to you by your teacher.
...the shrub is so big it covers multiple sample points?
For each sampling point it touches, record it as a hit ('H') and record its height at that point.

GLOBE Carbon Cycle - Standard Shrub/Sapling Data Sheet				
School:			Date:	
Site Name:				
Recorded By:				
Sample \#	Shrub/Sapling Presence (H=hit, M=miss)	$\begin{aligned} & \text { Type } \\ & \text { (E = evergreen, } \\ & \mathrm{D}=\text { deciduous) } \end{aligned}$	Height (m)	Notes
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				

Shrub/Sapling Calculations

Use the data from the Shrub/Sapling Data Sheet in the equations below:

1. Calculate the variables needed for the equations:

Total number of observations $=$ \qquad
Total number ‘D’ hits = \qquad
Total number 'E' hits = \qquad
Sum of the heights of ' D ' hits only $=$ \qquad
Sum of the heights of ' E ' hits only = \qquad
2. Use the variables above in the equations below:

Deciduous $\%$ cover $=\frac{\text { Total number 'D' hits }}{\text { Total number observations }} \times 100$

Deciduous average height $(\mathrm{m})=\frac{\text { Sum of heights of ' } D \text { ' hits }}{\text { Total number ' } D \text { ' hits }}$

Evergreen \% cover $=\frac{\text { Total number ' } \mathrm{E} \text { ' hits }}{\text { Total number observations }} \times 100$

Evergreen average height $(m)=\frac{\text { Sum of heights of ' } E \text { ' hits }}{\text { Total number ' } E \text { ' hits }}$

