RC1: Defining Regional Boundaries ### **Purpose** To identify a region for study as a system, and to establish a list of characteristics and features useful for determining the boundaries of regional systems ### Overview Students discuss their current understanding of what Earth systems are and how they work, and consider how to identify the boundaries of a region for Earth system study. In small groups, they select a region for recommendation to the class, and they make a list of characteristics and features that can mark the boundaries of regional systems. After presentations by each group, the class chooses one region for study as an Earth system. Then they mark the boundaries of their chosen region on their Landsat image, topographic map, or other map. ### **Student Outcomes** Students will be able to, - define "region" as an area which has similar features throughout; - identify a specific region for study as an Earth system by finding boundaries; and - describe the region's boundaries so that others can find them on a map. #### Science Concepts Earth and Space Sciences Weather changes from day to day and over the seasons. The sun is the major source of energy at Earth's surface. Solar insolation drives atmospheric and ocean circulation Each element moves among different reservoirs (biosphere, lithosphere, atmosphere, hydrosphere). ### Physical Sciences Heat is transferred by conduction, convection and radiation. Heat moves from warmer to colder objects. Sun is a major source of energy for changes on the Earth's surface. Energy is conserved. Chemical reactions take place in every part of the environment. ### Life Sciences Organisms can only survive in environments where their needs are met Earth has many different environments that support different combinations of organisms. Organisms' functions relate to their environment. Organisms change the environment in which they live. Humans can change natural environments. Plants and animals have life cycles. Ecosystems demonstrate the complementary nature of structure and function. All organisms must be able to obtain and use resources while living in a constantly changing environment. All populations living together and the physical factors with which they interact constitute an ecosystem. Populations of organisms can be categorized by the function they serve in the ecosystem. Sunlight is the major source of energy for ecosystems. The number of animals, plants and microorganisms an ecosystem can support depends on the available resources. Atoms and molecules cycle among the living and non-living components of the ecosystem. Scientific Inquiry Abilities Analyzing maps Collaborating with classmates Communicate results and explanations. One or two class periods #### Level Middle, Secondary ### Materials and Tools Landsat image of your school Topographic maps and/or others such as vegetation, physical, soil maps of the region covered by the Landsat image (as available) ### Preparation Review the Landsat image and maps. Make student copies. (See Step 1, Preparation.) ### **Prerequisite** Students must have some familiarity with Landsat images and maps for this activity. ### Crosswalk to Other GLOBE Learning Activities Hydrology Investigation: Model a Catchment Basin Watersheds provide useful boundaries for study of the Earth system, and this activity introduces students to their watershed and how it works. It also builds their skills of interpreting maps and images, as they use these to construct a three-dimensional model of a watershed. With your preparatory review of the Landsat images and maps, you will be able to gauge whether or not your students need help in interpreting them before they do this activity. ### What to Do and How to Do It Step 1. Preparation Review the Landsat image and maps to find regions you may wish your students to identify. GIS (Geographic Information System) images showing watersheds, soils, and vegetation and other land cover types can enrich the activity. ### Make Student Copies Section of the Landsat image that includes the regions you have selected for student investigation GIS images (if you plan to use them) Work Sheets: Identifying a Region for Study Student Self-reflection Log: Identifying a Region Assessment rubric for this activity (You may want to share with students.) Step 2. Explain the purpose of the activity: to better understand the Earth at the regional scale by viewing it as a system. Explain that students will explore a new way of looking at the Earth – that is, as one system, a set of interconnected parts or components. ### Identifying a Region The region or regions you identify may be large or small. They should be larger than a study site, (defined by what one might see while standing in one place), and small enough for students to learn about them in a short period of time. If you need a specific size guideline, select an area that is about 5 km on a side. Natural boundaries are best, but if by using only natural boundaries you have a region that is too large, use a man-made feature, with the class. Do not worry if regional boundaries cannot be sharply defined. If you have any question about your students' grasp of what a system is, you might wish to take a few minutes to have each of them write a definition and share it in discussion Advanced students should need little help here. Beginning students may need to consider some familiar systems. You can such as a road. elicit their ideas about what some systems might be: a car, a social group, a sports team, the human body. You might draw a simple diagram of such a system on the board or on an overhead, or ask students to do that for the class. Explain to students that they will work with a Landsat image of their site, maps, and possibly other materials to identify and delineate the boundaries of a region for study as a system. In the next activity, they will consider the inputs and outputs of that regional system, i.e. what enters and leaves it such as water, soil particles, living things, energy, and chemicals. Make it clear to students that there are no right or wrong answers in this activity, and there is no one region that students will be expected to identify. What is important is for them to improve their skills at analyzing geographic information, at viewing regions as systems, and at justifying whatever choices of regions they make. ## Step 3. Have the class focus on and describe the area around the school, or a selected GLOBE study site, or other sites that may be familiar to them. Distribute the student copies of the Landsat image and any topographic maps or other maps of the area that you have. Look at the image and maps with students, and help them interpret what they see. What are the general features of the area? Discuss them. What can you conclude about land cover types, vegetation, and soils from the maps? Can you determine where all the water at the site comes from, and where it goes? Explain that a region should have some features that are homogeneous throughout, and boundaries that can be described. Do any regions become apparent to the class? ### Step 4. Ask students for a definition of "region." Discuss their suggestions. A region can be defined as a geographic area that has some consistent features or characteristics throughout. Regional boundaries are places where those features or characteristics change. Regions can be large or small. ## Step 5. Ask students what characteristics and features one might use to define a particular region. If they need prompting, suggest they consider the characteristics listed here. Bodies of water: streams, canals, rivers, ponds, lakes, or an ocean (A watershed makes an effective region for study as an Earth system.) Topographic features such as mountains, plateaus, or valleys Vegetation types: Forest, meadow, wetland, desert Soil types Soil moisture **Dams** Roads, bridges, and other areas of human development (homes, office buildings, factories, and shopping centers) if they are large enough to affect inputs and outputs to the region Political boundaries such as county or state lines **Parks** Have one student record a class list of characteristics on the board. # Step 6. Distribute the *Identifying a Region* for Study Work Sheet. Organize students into small groups, and ask them to identify a specific region to recommend to the class for study in the next activity. Students should keep in mind the purpose of defining a region for Earth system study in this set of activities, because, in the next activity, they will look at the region as a system of interacting components and will explore what enters the system and what leaves it. The regional boundaries they establish now will have much significance in the next activity, as students attempt to identify what crosses those boundaries. Tell them that each group will be asked to describe its chosen region to the class and to justify the choice. Request that each group designate a spokesperson. ## Step 7. Have student groups present and justify their chosen regions. Explain that the class will now choose one region to study as a system. The region the class ultimately chooses is of less importance than the process of student thinking about regions as systems, and of their collaborative work with each other. If you conduct RC2: Effects of Inputs and Outputs on a Region Learning Activity, your students will have an opportunity to discover how well their characteristics and features for regional boundaries work when they consider specific inputs and outputs to the region as an Earth system. ## Step 8. Help the class reach consensus on which region would work best for study as a system. If the class has difficulty reaching consensus, encourage them to look at how clearly a given region is defined by its boundaries, and how feasible and interesting it might be to study a particular region as a system with inputs and outputs. ## Step 9. Have students draw the boundaries of the class region on their copies of the Landsat image or map. Have students keep their copies of the map, or collect them for safekeeping until the next activity. ## Step 10. Collect the *Identifying a Region* for Study Work Sheet, and distribute the Student Self-reflection Log: Identifying a Region Work Sheet. The Self-reflection Log can be completed either in class or as homework. ### Student Assessment These student products can be used for assessment: Work Sheets Identifying a Region for Study Student Self-reflection Log: Identifying a Region Copies of maps on which students draw the boundaries of their group's selected region An assessment rubric covering the first work sheet, (group presentations and maps) is provided. Students' responses to the questions on the *Self-reflection Log* cannot be quantified, yet they play a special role in student learning. Students experiencing confusion or other problems with the topic may be more comfortable expressing themselves on the work sheet than in front of the whole class. ### Further Investigations Earth System on Foot Take students to explore the selected Earth system region. Visit the areas that students identified as regional boundaries, and invite them to reconsider the appropriateness of those boundaries. Give them an opportunity to modify their list of characteristics and features. ### Land Management with Earth System Science Ask land management professionals how they define regions for their work, what criteria they use, and how effective they think those criteria are. Find out which land management issues are being addressed on the basis of watershed boundaries, and why. ### Usefulness of Diagrams at Different Scales For students who have completed *LC2*: Representing the Study Site in a Diagram or *LC4*: Diagramming the Study Site for Others learning activities: Ask students to predict how well their diagrams of the local study site will apply to the regional scale, without looking again at those diagrams. Then have them retrieve the diagrams, evaluate how well they apply to the regional scale, and complete a short written report on their evaluation. As mentioned earlier in this activity, the regional scale is geographically larger than the local scale, but many of the processes that shape the Earth system act in similar ways over a range of scales. # **Identifying a Region for Study**Work Sheet | Name: | Class: | Date: | |------------------------|---|------------------------------| | 1. What is a region? V | √rite your definition here. | | | | | | | | | | | study as a system. | want a region you can look at in terr | | | a. What features or | characteristics are you using to iden | tify your region? Why? | | | | | | will help you identify | cribe your region to the class? List the thing the full circumference of the region's can use latitude and longitude lines, | s boundaries – north, south, | | | | | | | | | # **Identifying a Region**Work Sheet-2: Student Self-reflection Log | Name: | Class: | Date: | |----------------------------|---|----------------------| | | estions below are intended to help ywhat you need help in understandi | | | What have you learned | about identifying regions that you fo | eel confident about? | | | | | | 2. What are you having tro | uble understanding about regions? | , | | | | | | | | | | 3. What more would you lil | ke to know about the region you ha | ve identified? | | | | | | | | | Assessment Rubric: RC1: Defining Regional Boundaries | Identifying a Region for Study | n for Study as a System | tem | | | |------------------------------------|---|---|---|--| | | 4 | 3 | 2 | 1 | | Definition of Region | Defines a region as an area with some features that are heterogenous (the same) throughout; features are scientifically appropriate | Defines region as an
area that is different
from others around it | Defines region as a
particular area | Has not yet defined
region | | Presentation of
Region Selected | Fully and clearly describes specific features that are heterogeneous throughout the area, | Partially describes
features that are
heterogeneous
throughout the area | Partially describes
features that are
heterogeneous | Has not yet attempted
to justify selection of
region | | Boundaries Marked
and Described | Clearly marks full circumference of circumference of boundary on map, and describes it with specific describes it in general geographic place rams and/or latitude/ longitude lines | Clearly marks full
circumference of
boundary, and
describes it in general
terms | Marks and describes
some of boundary in
general terms | Incompletely and
vaguely describes
boundaries |